6,964 research outputs found
A Chiral Spin Theory in the Framework of an Invariant Evolution Parameter Formalism
We present a formulation for the construction of first order equations which
describe particles with spin, in the context of a manifestly covariant
relativistic theory governed by an invariant evolution parameter; one obtains a
consistent quantized formalism dealing with off-shell particles with spin. Our
basic requirement is that the second order equation in the theory is of the
Schr\"{o}dinger-Stueckelberg type, which exhibits features of both the
Klein-Gordon and Schr\"{o}dinger equations. This requirement restricts the
structure of the first order equation, in particular, to a chiral form. One
thus obtains, in a natural way, a theory of chiral form for massive particles,
which may contain both left and right chiralities, or just one of them. We
observe that by iterating the first order system, we are able to obtain second
order forms containing the transverse and longitudinal momentum relative to a
time-like vector used to maintain covariance of the theory.
This time-like vector coincides with the one used by Horwitz, Piron, and Reuse
to obtain an invariant positive definite space-time scalar product, which
permits the construction of an induced representation for states of a particle
with spin. We discuss the currents and continuity equations, and show that
these equations of motion and their currents are closely related to the spin
and convection parts of the Gordon decomposition of the Dirac current. The
transverse and longitudinal aspects of the particle are complementary, and can
be treated in a unified manner using a tensor product Hilbert space.
Introducing the electromagnetic field we find an equation which gives rise to
the correct gyromagnetic ratio, and is fully Hermitian under the proposed
scalar product. Finally, we show that the original structure of Dirac'sComment: Latex, 61 pages. Minor revisions. To be published in J. Math. Phy
Gravitational Repulsion within a Black-Hole using the Stueckelberg Quantum Formalism
We wish to study an application of Stueckelberg's relativistic quantum theory
in the framework of general relativity. We study the form of the wave equation
of a massive body in the presence of a Schwarzschild gravitational field. We
treat the mathematical behavior of the wavefunction also around and beyond the
horizon (r=2M). Classically, within the horizon, the time component of the
metric becomes spacelike and distance from the origin singularity becomes
timelike, suggesting an inevitable propagation of all matter within the horizon
to a total collapse at r=0. However, the quantum description of the wave
function provides a different understanding of the behavior of matter within
the horizon. We find that a test particle can almost never be found at the
origin and is more probable to be found at the horizon. Matter outside the
horizon has a very small wave length and therefore interference effects can be
found only on a very small atomic scale. However, within the horizon, matter
becomes totally "tachionic" and is potentially "spread" over all space. Small
location uncertainties on the atomic scale become large around the horizon, and
different mass components of the wave function can therefore interfere on a
stellar scale. This interference phenomenon, where the probability of finding
matter decreases as a function of the distance from the horizon, appears as an
effective gravitational repulsion.Comment: 20 pages, 6 figure
Measurement Theory in Lax-Phillips Formalism
It is shown that the application of Lax-Phillips scattering theory to quantum
mechanics provides a natural framework for the realization of the ideas of the
Many-Hilbert-Space theory of Machida and Namiki to describe the development of
decoherence in the process of measurement. We show that if the quantum
mechanical evolution is pointwise in time, then decoherence occurs only if the
Hamiltonian is time-dependent. If the evolution is not pointwise in time (as in
Liouville space), then the decoherence may occur even for closed systems. These
conclusions apply as well to the general problem of mixing of states.Comment: 14 pages, IASSNS-HEP 93/6
Representation of Quantum Mechanical Resonances in the Lax-Phillips Hilbert Space
We discuss the quantum Lax-Phillips theory of scattering and unstable
systems. In this framework, the decay of an unstable system is described by a
semigroup. The spectrum of the generator of the semigroup corresponds to the
singularities of the Lax-Phillips -matrix. In the case of discrete (complex)
spectrum of the generator of the semigroup, associated with resonances, the
decay law is exactly exponential. The states corresponding to these resonances
(eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips
Hilbert space, and therefore all physical properties of the resonant states can
be computed.
We show that the Lax-Phillips -matrix is unitarily related to the
-matrix of standard scattering theory by a unitary transformation
parametrized by the spectral variable of the Lax-Phillips theory.
Analytic continuation in has some of the properties of a method
developed some time ago for application to dilation analytic potentials.
We work out an illustrative example using a Lee-Friedrichs model for the
underlying dynamical system.Comment: Plain TeX, 26 pages. Minor revision
Recommended from our members
Supervision of psychotherapists : the impact of gender, androgny, and experience on supervisor emphasis.
Microcanonical Ensemble and Algebra of Conserved Generators for Generalized Quantum Dynamics
It has recently been shown, by application of statistical mechanical methods
to determine the canonical ensemble governing the equilibrium distribution of
operator initial values, that complex quantum field theory can emerge as a
statistical approximation to an underlying generalized quantum dynamics. This
result was obtained by an argument based on a Ward identity analogous to the
equipartition theorem of classical statistical mechanics. We construct here a
microcanonical ensemble which forms the basis of this canonical ensemble. This
construction enables us to define the microcanonical entropy and free energy of
the field configuration of the equilibrium distribution and to study the
stability of the canonical ensemble. We also study the algebraic structure of
the conserved generators from which the microcanonical and canonical ensembles
are constructed, and the flows they induce on the phase space.Comment: Plain TeX, 18 pages. Corrected report number onl
- …