4,702 research outputs found
Longitudinal/Goldstone boson equivalence and phenomenology of probing the electroweak symmetry breaking
We formulate the equivalence between the longitudinal weak-boson and the
Goldstone boson as a criterion for sensitively probing the electroweak symmetry
breaking mechanism and develop a precise power counting rule for chiral
Lagrangian formulated electroweak theories. With these we semi-quatitatively
analyze the sensitivities to various effective operators related to
electrowaeak symmetry breaking via weak-boson scatterings at the CERN Large
Hadron Collider (LHC).Comment: 6 pages, LaTex, 1 postscript figure included using psfig.te
Sensitivity of the LHC to Electroweak Symmetry Breaking: Equivalence Theorem as a Criterion
Based upon our recent study on the intrinsic connection between the
longitudinal weak-boson scatterings and probing the electroweak symmetry
breaking (EWSB) mechanism, we reveal the profound physical content of the
Equivalence Theorem (ET) as being able to discriminate physical processes which
are sensitive/insensitive to probing the EWSB sector. With this physical
content of the ET as a criterion, we analyze the complete set of the bosonic
operators in the electroweak chiral Lagrangian and systematically classify the
sensitivities to probing all these operators at the CERN LHC via the weak-boson
fusion in channel. This is achieved by developing a precise power
counting rule (a generalization from Weinberg's counting method) to {\it
separately} count the power dependences on the energy and all relevant mass
scales.Comment: 33 pages, LaTeX, 10 figures and Table-1b are in the separate file
figtab.uu. (The only change made from the previous version is to fix the bugs
in the uuencoded file.
Conductance spectra of metallic nanotube bundles
We report a first principles analysis of electronic transport characteristics
for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube
coupling causes universal conductance suppression near Fermi level regardless
of the rotational arrangement of individual tubes. However, when n is a
multiple of 3, the bundles exhibit a diversified conductance dependence on the
orientation details of the constituent tubes. The total energy of the bundle is
also sensitive to the orientation arrangement only when n is a multiple of 3.
All the transport properties and band structures can be well understood from
the symmetry consideration of whether the rotational symmetry of the individual
tubes is commensurate with that of the bundle
Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking
A strategy is proposed to realize robust transport in time reversal invariant
photonic system. Using numerical simulation and microwave experiment, we
demonstrate that a chiral guided mode in the channel of a three-dimensional
dielectric woodpile photonic crystal is immune to the scattering of a square
patch of metal or dielectric inserted to block the channel. The chirality based
robust transport can be realized in nonmagnetic dielectric materials without
any external field.Comment: 16 pages, 5 figure
Chaos control in random Boolean networks by reducing mean damage percolation rate
Chaos control in Random Boolean networks is implemented by freezing part of
the network to drive it from chaotic to ordered phase. However, controlled
nodes are only viewed as passive blocks to prevent perturbation spread. This
paper proposes a new control method in which controlled nodes can exert an
active impact on the network. Controlled nodes and frozen values are
deliberately selected according to the information of connection and Boolean
functions. Simulation results show that the number of nodes needed to achieve
control is largely reduced compared to previous method. Theoretical analysis is
also given to estimate the least fraction of nodes needed to achieve control.Comment: 10 pages, 2 figure
- …