430 research outputs found

    Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management

    Full text link
    We report bulk-quality n-type SrTiO3 (n-SrTiO3) thin films fabricated by pulsed laser deposition, with electron mobility as high as 6600 cm2 V-1 s-1 at 2 K and carrier density as low as 2.0 x 10^18cm-3 (~ 0.02 at. %), far exceeding previous pulsed laser deposition films. This result stems from precise strontium and oxygen vacancy defect chemistry management, providing a general approach for defect control in complex oxide heteroepitaxy.Comment: 13 pages, 4 figure

    Stoichiometry control of the electronic properties of the LaAlO_3/SrTiO_3 heterointerface

    Full text link
    We investigate the effect of the laser parameters of pulsed laser deposition on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001) heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide range from 0.88 to 1.15, and was found to have a strong effect on the interface conductivity. In particular, the carrier density is modulated over more than two orders of magnitude. The film lattice expansion, caused by cation vacancies, is found to be the important functional parameter. These results can be understood to arise from the variations in the electrostatic boundary conditions, and their resolution, with stoichiometry.Comment: 4 pages, 3 figures, submitted for publicatio

    Fermi surface and superconductivity in low-density high-mobility {\delta}-doped SrTiO3

    Full text link
    The electronic structure of low-density n-type SrTiO3 delta-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows that similar effective masses are found for all components, associated with the splitting of the light electron pocket. The dimensionality crossover in the superconducting state is found to be distinct from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.Comment: 4 pages, 5 figures, submitted for publicatio

    Coexistence of two- and three-dimensional Shubnikov-de Haas oscillations in Ar^+ -irradiated KTaO_3

    Full text link
    We report the electron doping in the surface vicinity of KTaO_3 by inducing oxygen-vacancies via Ar^+ -irradiation. The doped electrons have high mobility (> 10^4 cm^2/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar^+ -irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides

    Dominant mobility modulation by the electric field effect at the LaAlO_3 / SrTiO_3 interface

    Full text link
    Caviglia et al. [Nature (London) 456, 624 (2008)] have found that the superconducting LaAlO_3 / SrTiO_3 interface can be gate modulated. A central issue is to determine the principal effect of the applied electric field. Using magnetotransport studies of a gated structure, we find that the mobility variation is almost five times as large as the sheet carrier density. Furthermore, superconductivity can be suppressed at both positive and negative gate bias. These results indicate that the relative disorder strength strongly increases across the superconductor-insulator transition.Comment: 4 pages, 4 figure

    Metal-to-insulator transition in anatase TiO2 thin films induced by growth rate modulation

    Full text link
    We demonstrate control of the carrier density of single phase anatase TiO2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO2 samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.Comment: 13 pages 3 figure

    Thickness dependence of the mobility at the LaAlO_3 / SrTiO_3 interface

    Full text link
    The electronic transport properties of a series of LaAlO_3 / SrTiO_3 interfaces were investigated, and a systematic thickness dependence of the sheet resistance and magnetoresistance was found for constant growth conditions. This trend occurs above the critical thickness of four unit cells, below which the LaAlO_3 / SrTiO_3 interface is not conducting. A dramatic decrease in mobility of the electron gas of nearly two orders of magnitude was observed with increasing LaAlO_3 thickness from five to 25 unit cells.Comment: 3 pages, 4 figures, submitted for publicatio

    Intrinsic spin-orbit coupling in superconducting {\delta}-doped SrTiO3 heterostructures

    Full text link
    We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO3 heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.Comment: main text 4 pages with 4 figures, supplemental material 2 pages with 2 figure, submitted for publicatio
    corecore