14,869 research outputs found

    Angular momentum conservation for uniformly expanding flows

    Get PDF
    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around of space-time due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses rate of change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation.Comment: 5 revtex4 pages, 3 eps figure

    Fate of the first traversible wormhole: black-hole collapse or inflationary expansion

    Full text link
    We study numerically the stability of Morris & Thorne's first traversible wormhole, shown previously by Ellis to be a solution for a massless ghost Klein-Gordon field. Our code uses a dual-null formulation for spherically symmetric space-time integration, and the numerical range covers both universes connected by the wormhole. We observe that the wormhole is unstable against Gaussian pulses in either exotic or normal massless Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons and either explodes to form an inflationary universe or collapses to a black hole, if the total input energy is respectively negative or positive. As the perturbations become small in total energy, there is evidence for critical solutions with a certain black-hole mass or Hubble constant. The collapse time is related to the initial energy with an apparently universal critical exponent. For normal matter, such as a traveller traversing the wormhole, collapse to a black hole always results. However, carefully balanced additional ghost radiation can maintain the wormhole for a limited time. The black-hole formation from a traversible wormhole confirms the recently proposed duality between them. The inflationary case provides a mechanism for inflating, to macroscopic size, a Planck-sized wormhole formed in space-time foam.Comment: 10 pages, RevTeX4, 11 figures, epsf.st

    The IRX-β\beta relation: Insights from simulations

    Get PDF
    We study the relationship between the UV continuum slope and infrared excess (IRX≡LIR/LFUV\equiv L_{\rm IR}/L_{\rm FUV}) predicted by performing dust radiative transfer on a suite of hydrodynamical simulations of galaxies. Our suite includes both isolated disk galaxies and mergers intended to be representative of galaxies at both z∼0z \sim 0 and z∼2−3z \sim 2-3. Our low-redshift isolated disks and mergers often populate a region around the the locally calibrated \citet[][M99]{M99} relation but move well above the relation during merger-induced starbursts. Our high-redshift simulated galaxies are blue and IR-luminous, which makes them lie above the M99 relation. The value of UV continuum slope strongly depends on the dust type used in the radiative transfer calculations: Milky Way-type dust leads to significantly more negative (bluer) slopes compared with Small Magellanic Cloud-type dust. The effect on β\beta due to variations in the dust composition with galaxy properties or redshift can dominate over other sources of β\beta variations and is the dominant model uncertainty. The dispersion in β\beta is anticorrelated with specific star formation rate and tends to be higher for the z∼2−3z \sim 2-3 simulations. In the actively star-forming z∼2−3z \sim 2-3 simulated galaxies, dust attenuation dominates the dispersion in β\beta, whereas in the z∼0z \sim 0 simulations, the contributions of SFH variations and dust are similar. For low-SSFR systems at both redshifts, SFH variations dominate the dispersion. Finally, the simulated z∼2−3z \sim 2-3 isolated disks and mergers both occupy a region in the \irxbeta\ plane consistent with observed z∼2−3z \sim 2-3 dusty star-forming galaxies (DSFGs). Thus, contrary to some claims in the literature, the blue colors of high-z DSFGs do not imply that they are short-lived starbursts.Comment: 20 pages+a 4-page appendix, Accepted for publication at Ap

    Myasthenia gravis as a 'stroke mimic'

    Get PDF

    Engineering - young people want to be informed

    Get PDF
    Young people in developed nations recognise the contribution that science and technology make to society and acknowledge their importance now and in the future, yet few view their study as leading to interesting careers. Some countries are taking action to raise interest in science, technologies, engineering and mathematics and increase the number of students studying these subjects. One of the barriers to young people pursuing engineering is their limited or distorted perception of it - they associate it only with building and fixing things. Young people rarely encounter engineers, unlike other professionals, engineering has little or no advocacy in the media and there are few opportunities to experience engineering. Many of the pupils surveyed at the start of Engineering the Future, a three year EPSRC-funded project, wrote “don’t know what engineering is” and/or “would like more information”. This paper reports on work with researchers, policy makers and practitioners in Scotland to develop a sustainable model of activities and interactions that develops pupils’ understanding of the nature of engineering, embeds experiences of engineering within the school classroom and curriculum and promotes engineering as a career. After learning about engineering through the activities the pupils’ perceptions had improved. Almost all considered it important that young people know about engineering, because it is an essential part of everyday life and, in the words of one pupil - “If we know more about it, our minds wouldn’t stay closed to it. We would maybe take it up.
    • …
    corecore