6,333 research outputs found
Capture on High Curvature Region: Aggregation of Colloidal Particle Bound to Giant Phospholipid Vesicles
A very recent observation on the membrane mediated attraction and ordered
aggregation of colloidal particles bound to giant phospholipid vesicles (I.
Koltover, J. O. R\"{a}dler, C. R. Safinya, Phys. Rev. Lett. {\bf 82},
1991(1999)) is investigated theoretically within the frame of Helfrich
curvature elasticity theory of lipid bilayer fluid membrane. Since the concave
or waist regions of the vesicle possess the highest local bending energy
density, the aggregation of colloidal beads on these places can reduce the
elastic energy in maximum. Our calculation shows that a bead in the concave
region lowers its energy . For an axisymmetrical dumbbell
vesicle, the local curvature energy density along the waist is equally of
maximum, the beads can thus be distributed freely with varying separation
distance.Comment: 12 pages, 2 figures. REVte
Spin correlated interferometry for polarized and unpolarized photons on a beam splitter
Spin interferometry of the 4th order for independent polarized as well as
unpolarized photons arriving simultaneously at a beam splitter and exhibiting
spin correlation while leaving it, is formulated and discussed in the quantum
approach. Beam splitter is recognized as a source of genuine singlet photon
states. Also, typical nonclassical beating between photons taking part in the
interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at
http://m3k.grad.hr/pavici
Large deformation of spherical vesicle studied by perturbation theory and Surface evolver
With tangent angle perturbation approach the axial symmetry deformation of a
spherical vesicle in large under the pressure changes is studied by the
elasticity theory of Helfrich spontaneous curvature model.Three main results in
axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are
obtained. These axial symmetry morphology deformations are in agreement with
those observed in lipsome experiments by dark-field light microscopy [Hotani,
J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin
filaments (myelin) observed in living state (see, Bessis, Living Blood Cells
and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave
shape and peanut shape can be simulated with the help of a powerful software,
Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the
spontaneous curvature can be easy taken into account.Comment: 16 pages, 6 EPS figures and 2 PS figure
Generalized W-Class State and its Monogamy Relation
We generalize the W class of states from qubits to qudits and prove
that their entanglement is fully characterized by their partial entanglements
even for the case of the mixture that consists of a W-class state and a product
state .Comment: 12 pages, 1 figur
Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model
An analytic solution for Helfrich spontaneous curvature membrane model (H.
Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf
54}, 2816 (1996)), which has a conspicuous feature of representing the circular
biconcave shape, is studied. Results show that the solution in fact describes a
family of shapes, which can be classified as: i) the flat plane (trivial case),
ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the
oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting
inverted circular biconcave shape, and viii) the self-intersecting nodoidlike
cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the
one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999
Quantum Communication with Correlated Nonclassical States
Nonclassical correlations between the quadrature-phase amplitudes of two
spatially separated optical beams are exploited to realize a two-channel
quantum communication experiment with a high degree of immunity to
interception. For this scheme, either channel alone can have an arbitrarily
small signal-to-noise ratio (SNR) for transmission of a coherent ``message''.
However, when the transmitted beams are combined properly upon authorized
detection, the encoded message can in principle be recovered with the original
SNR of the source. An experimental demonstration has achieved a 3.2 dB
improvement in SNR over that possible with correlated classical sources.
Extensions of the protocol to improve its security against eavesdropping are
discussed.Comment: 8 pages and 4 figures (Figure 1; Figures 2a, 2b; Figure 2
Security improvement of using modified coherent state for quantum cryptography
Weak coherent states as a photon source for quantum cryptography have limit
in secure data rate and transmission distance because of the presence of
multi-photon events and loss in transmission line. Two-photon events in a
coherent state can be taken out by a two-photon interference scheme. We
investigate the security issue of utilizing this modified coherent state in
quantum cryptography. A 4 dB improvement in secure data rate or a nearly
two-fold increase in transmission distance over the coherent state are found.
With a recently proposed and improved encoding strategy, further improvement is
possible.Comment: 5 pages, 2 figures, to appear in Physical Review
- …