248 research outputs found
Immunohistochemical expression of mitochondrial membrane complexes (MMCs) I, III, IV and V in malignant and benign periampullary epithelium: a potential target for drug therapy of periampullary cancer?
<p>Abstract</p> <p>Background</p> <p>Mitochondrial membrane complexes (MMCs) are key mediators of cellular oxidative phosphorylation, and inhibiting them could lead to cell death. No published data are available on the relative abundance of MMCs in different periampullary cancers. Therefore, we studied the expression profile of MMCs I, III, IV and V in periampullary cancers, reactive pancreatitis, normal pancreas and chronic pancreatitis.</p> <p>Methods</p> <p>This was a retrospective study on tissue microarrays constructed from formalin-fixed paraffin-embedded tissue from 126 consecutive patients (cancer = 104, chronic pancreatitis = 22) undergoing pancreatic resections between June 2001 and June 2006. 78 specimens of chronic pancreatitis tissue were obtained adjacent to areas of cancer. Normal pancreatic tissue was obtained from the resection specimens in a total of 30 patients. Metastatic tumours in 61 regional lymph nodes from 61 patients were also studied.</p> <p>Results</p> <p>MMCs I, III, IV and V were highly expressed (p < 0.05) in all primary periampullary cancers compared with metastatic lymph nodes and adjacent benign pancreas. MMCs III, IV and V were highly expressed in all cancers regardless of type compared with chronic pancreatitis (p < 0.05). Higher expression of MMCs I and V was associated with better survival and may, in part, relate to lower expression of these MMCs in poorly differentiated tumours compared with well and moderately differentiated tumours.</p> <p>Conclusions</p> <p>Differential expression of MMCs III, IV and V in primary periampullary cancers compared with adjacent benign periampullary tissue and chronic pancreatitis is a novel finding, which may render them attractive anticancer targets.</p
Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies
Inborn and acquired metabolic defects in cancer
The observation that altered metabolism is the fundamental cause of cancer was made by Otto Warburg nearly a century ago. However, the subsequent identification of oncogenes and tumor suppressor genes has displaced Warburg's theory pointing towards genetic aberrations as the underlining cause of cancer. Nevertheless, in the last decade, cancer-associated mutations have been identified in genes coding for tricarboxylic acid cycle (TCA cycle, also known as Krebs cycle) and closely related enzymes that have essential roles in cellular metabolism. These observations have revived interest in Warburg's hypothesis and prompted a flurry of functional studies in the hope of gaining mechanistic insight into the links between mitochondrial dysfunction, metabolic alterations, and cancer. In this review, we discuss the potential pro-oncogenic signaling role of some TCA cycle metabolites and their derivatives (oncometabolites). In particular, we focus on their effects on dioxygenases, a family of oxygen and α-ketoglutarate-dependent enzymes that control, among other things, the levels and activity of the hypoxia-inducible transcription factors and the activity of DNA and histone demethylases
Hydrogen Peroxide Acts on Sensitive Mitochondrial Proteins to Induce Death of a Fungal Pathogen Revealed by Proteomic Analysis
How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H2O2) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H2O2-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H2O2-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F1F0 ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H2O2-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H2O2 stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H2O2
HIF-Independent Regulation of Thioredoxin Reductase 1 Contributes to the High Levels of Reactive Oxygen Species Induced by Hypoxia
Cellular adaptation to hypoxic conditions mainly involves transcriptional changes in which hypoxia inducible factors (HIFs) play a critical role. Under hypoxic conditions, HIF protein is stabilized due to inhibition of the activity of prolyl hydroxylases (EGLNs). Because the reaction carried out by these enzymes uses oxygen as a co-substrate it is generally accepted that the hypoxic inhibition of EGLNs is due to the reduction in oxygen levels. However, several studies have reported that hypoxic generation of mitochondrial reactive oxygen species (ROS) is required for HIF stabilization. Here, we show that hypoxia downregulates thioredoxin reductase 1 (TR1) mRNA and protein levels. This hypoxic TR1 regulation is HIF independent, as HIF stabilization by EGLNs inhibitors does not affect TR1 expression and HIF deficiency does not block TR1 hypoxic-regulation, and it has an effect on TR1 function, as hypoxic conditions also reduce TR1 activity. We found that, when cultured under hypoxic conditions, TR1 deficient cells showed a larger accumulation of ROS compared to control cells, whereas TR1 over-expression was able to block the hypoxic generation of ROS. Furthermore, the changes in ROS levels observed in TR1 deficient or TR1 over-expressing cells did not affect HIF stabilization or function. These results indicate that hypoxic TR1 down-regulation is important in maintaining high levels of ROS under hypoxic conditions and that HIF stabilization and activity do not require hypoxic generation of ROS
Burmese pythons in Florida: A synthesis of biology, impacts, and management tools
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control. (119 pp
The taper of cast post preparation measured using innovative image processing technique
<p>Abstract</p> <p>Background</p> <p>No documentation in the literature about taper of cast posts. This study was conducted to measure the degree of cast posts taper, and to evaluate its suitability based on the anatomy aspects of the common candidate teeth for post reconstruction.</p> <p>Methods</p> <p>Working casts for cast posts, prepared using Gates Glidden drills, were collected. Impressions of post spaces were made using polyvinyl siloxan putty/wash technique. Digital camera with a 10' high quality lens was used for capturing two digital images for each impression; one in the Facio-Lingual (FL) and the other in the Mesio-Distal (MD) directions. Automated image processing program was developed to measure the degree of canal taper. Data were analyzed using Statistical Package for Social Sciences software and One way Analysis of Variance.</p> <p>Results</p> <p>Eighty four dies for cast posts were collected: 16 for each maxillary anterior teeth subgroup, and 18 for each maxillary and mandibular premolar subgroup. Mean of total taper for all preparations was 10.7 degree. There were no statistical differences among the total taper of all groups (P = .256) or between the MD and FL taper for each subgroup. Mean FL taper for the maxillary first premolars was lower significantly (P = .003) than the maxillary FL taper of the second premolars. FL taper was higher than the MD taper in all teeth except the maxillary first premolars.</p> <p>Conclusions</p> <p>Taper produced did not reflect the differences among the anatomy of teeth. While this technique deemed satisfactory in the maxillary anterior teeth, the same could not be said for the maxillary first premolars. Careful attention to the root anatomy is mandatory.</p
Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation
Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance
SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
It has become increasing clear that alterations in cellular metabolism have a key role in the generation and maintenance of cancer. Some of the metabolic changes can be attributed to the activation of oncogenes or loss of tumor suppressors. Here, we show that the mitochondrial sirtuin, SirT3, acts as a tumor suppressor via its ability to suppress reactive oxygen species (ROS) and regulate hypoxia inducible factor 1α (HIF-1α). Primary mouse embryo fibroblasts (MEFs) or tumor cell lines expressing SirT3 short-hairpin RNA exhibit a greater potential to proliferate, and augmented HIF-1α protein stabilization and transcriptional activity in hypoxic conditions. SirT3 knockdown increases tumorigenesis in xenograft models, and this is abolished by giving mice the anti-oxidant N-acetyl cysteine. Moreover, overexpression of SirT3 inhibits stabilization of HIF-1α protein in hypoxia and attenuates increases in HIF-1α transcriptional activity. Critically, overexpression of SirT3 decreases tumorigenesis in xenografts, even when induction of the sirtuin occurs after tumor initiation. These data suggest that SirT3 acts to suppress the growth of tumors, at least in part through its ability to suppress ROS and HIF-1α
Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma
<p>Abstract</p> <p>Background</p> <p>Succinate dehydrogenase (SDH) has been associated with carcinogenesis in pheochromocytoma and paraganglioma. In the present study we investigated components of the oxidative phosphorylation system in human neuroblastoma tissue samples.</p> <p>Methods</p> <p>Spectrophotometric measurements, immunohistochemical analysis and Western blot analysis were used to characterize the aerobic mitochondrial energy metabolism in neuroblastomas (NB).</p> <p>Results</p> <p>Compared to mitochondrial citrate synthase, SDH activity was severely reduced in NB (n = 14) versus kidney tissue. However no pathogenic mutations could be identified in any of the four subunits of SDH. Furthermore, no genetic alterations could be identified in the two novel SDH assembly factors SDHAF1 and SDH5. Alterations in genes encoding nfs-1, frataxin and isd-11 that could lead to a diminished SDH activity have not been detected in NB.</p> <p>Conclusion</p> <p>Because downregulation of other complexes of the oxidative phosphorylation system was also observed, a more generalized reduction of mitochondrial respiration seems to be present in neuroblastoma in contrast to the single enzyme defect found in hereditary pheochromocytomas.</p
- …