9 research outputs found

    Compartmentation of Alkaloid Synthesis, Transport, and Storage

    No full text

    Toxins and their phytoremediation

    No full text
    The agricultural and industrial revolutions in the last few decades have resulted in increased concentration of toxins in our environment that are now-a-days a major cause of toxicity in plants and animals. Among different toxins, increasing levels of salts, heavy metal, pesticides and other chemicals are posing a threat to agricultural as well as natural ecosystems of the world. These contaminants result in soil, air and water pollution, and loss of arable lands as well as crop productivity. They also cause changes in species composition and loss of biodiversity by bringing about changes in the structure of natural communities and ecosystems. In this situation, different approaches are being adopted to reclaim polluted environments. Among these, phytoremediation has a potential in removing these toxins from the environment. This approach is based on the use of natural hyperaccumulator plant species that can tolerate relatively high levels of pollutants in the environment. Pollutants accumulated in stems and leaves of high biomass producing and tolerant plants can be harvested and removed from the site. Therefore, this approach has a potential to remove large amounts of toxins by harvesting the above-ground biomass. However, the effectiveness of phytoremediation approach can be increased if we have better knowledge of physiological, biochemical, molecular and genetic bases of plant resistance to natural and anthropogenic induced toxins. All these aspects of toxicity mechanisms and their removal techniques are comprehensively reviewed in this book. © Springer Science+Business Media B.V. 2010
    corecore