50 research outputs found

    Intergenic and Genic Sequence Lengths Have Opposite Relationships with Respect to Gene Expression

    Get PDF
    Eukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression

    The basidiomycetous yeast Trichosporon may cause severe lung exacerbation in cystic fibrosis patients - clinical analysis of Trichosporon positive patients in a Munich cohort

    Get PDF
    Background: The relevance of Trichosporon species for cystic fibrosis (CF) patients has not yet been extensively investigated. Methods: The clinical course of CF patients with Trichosporon spp. in their respiratory secretions was analysed between 2003 and 2010 in the Munich CF center. All respiratory samples of 360 CF patients (0 - 52.4 years; mean FEV1 2010 81.4% pred) were investigated. Results: In 8 patients (2.2%, 3 male, mean age 21.8 years) Trichosporon was detected at least once. One patient carried T. asahii. One patient carried T. mycotoxinivorans and one patient T. inkin as determined by DNA sequencing. As potential risk factors for Trichosporon colonization steroid treatment, allergic bronchopulmonary aspergillosis (ABPA) and CF associated diabetes were identified in 6, 5, and 2 patients respectively. For one patient, the observation period was not long enough to determine the clinical course. One patient had only a single positive specimen and exhibited a stable clinical course determined by change in forced expiratory volume in one second (FEV1), body-mass-index (BMI), C-reactive protein (CRP) and immunoglobulin G (IgG). Of 6 patients with repeatedly positive specimen (mean detection period 4.5 years), 4 patients had a greater decline in FEV1 than expected, 2 of these a decline in BMI and 1 an increase in IgG above the reference range. 2 patients received antimycotic treatment: one patient with a tormenting dry cough subjectively improved under Amphotericin B inhalation; one patient with a severe exacerbation due to T. inkin was treated with i.v. Amphotericin B, oral Voriconazole and Posaconazole which stabilized the clinical condition. Conclusions: This study demonstrates the potential association of Trichosporon spp. with severe exacerbations in CF patients

    DNA Topoisomerase II Modulates Insulator Function in Drosophila

    Get PDF
    Insulators are DNA sequences thought to be important for the establishment and maintenance of cell-type specific nuclear architecture. In Drosophila there are several classes of insulators that appear to have unique roles in gene expression. The mechanisms involved in determining and regulating the specific roles of these insulator classes are not understood. Here we report that DNA Topoisomerase II modulates the activity of the Su(Hw) insulator. Downregulation of Topo II by RNAi or mutations in the Top2 gene result in disruption of Su(Hw) insulator function. This effect is mediated by the Mod(mdg4)2.2 protein, which is a unique component of the Su(Hw) insulator complex. Co-immunoprecipitation and yeast two-hybrid experiments show that Topo II and Mod(mdg4)2.2 proteins directly interact. In addition, mutations in Top2 cause a slight decrease of Mod(mdg4)2.2 transcript but have a dramatic effect on Mod(mdg4)2.2 protein levels. In the presence of proteasome inhibitors, normal levels of Mod(mdg4)2.2 protein and its binding to polytene chromosomes are restored. Thus, Topo II is required to prevent Mod(mdg4)2.2 degradation and, consequently, to stabilize Su(Hw) insulator-mediated chromatin organization

    Incorporating climate change into systematic conservation planning

    Get PDF
    Abstract The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or -012-0269-3 new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region. Conserv (2012) 21:1651-1671 DOI 10.1007/s1053

    Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    Get PDF
    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks

    Window into the Complexities of Chromosome Interactomes

    No full text
    corecore