235 research outputs found

    Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment

    Get PDF
    BACKGROUND: Previously published studies have reported that up to 43% of patients with disorders of consciousness are erroneously assigned a diagnosis of vegetative state (VS). However, no recent studies have investigated the accuracy of this grave clinical diagnosis. In this study, we compared consensus-based diagnoses of VS and MCS to those based on a well-established standardized neurobehavioral rating scale, the JFK Coma Recovery Scale-Revised (CRS-R). METHODS: We prospectively followed 103 patients (55 +/- 19 years) with mixed etiologies and compared the clinical consensus diagnosis provided by the physician on the basis of the medical staff's daily observations to diagnoses derived from CRS-R assessments performed by research staff. All patients were assigned a diagnosis of 'VS', 'MCS' or 'uncertain diagnosis.' RESULTS: Of the 44 patients diagnosed with VS based on the clinical consensus of the medical team, 18 (41%) were found to be in MCS following standardized assessment with the CRS-R. In the 41 patients with a consensus diagnosis of MCS, 4 (10%) had emerged from MCS, according to the CRS-R. We also found that the majority of patients assigned an uncertain diagnosis by clinical consensus (89%) were in MCS based on CRS-R findings. CONCLUSION: Despite the importance of diagnostic accuracy, the rate of misdiagnosis of VS has not substantially changed in the past 15 years. Standardized neurobehavioral assessment is a more sensitive means of establishing differential diagnosis in patients with disorders of consciousness when compared to diagnoses determined by clinical consensus

    Visual fixation in the vegetative state: an observational case series PET study

    Get PDF
    BACKGROUND: Assessment of visual fixation is commonly used in the clinical examination of patients with disorders of consciousness. However, different international guidelines seem to disagree whether fixation is compatible with the diagnosis of the vegetative state (i.e., represents "automatic" subcortical processing) or is a sufficient sign of consciousness and higher order cortical processing. METHODS: We here studied cerebral metabolism in ten patients with chronic post-anoxic encephalopathy and 39 age-matched healthy controls. Five patients were in a vegetative state (without fixation) and five presented visual fixation but otherwise showed all criteria typical of the vegetative state. Patients were matched for age, etiology and time since insult and were followed by repeated Coma Recovery Scale-Revised (CRS-R) assessments for at least 1 year. Sustained visual fixation was considered as present when the eyes refixated a moving target for more than 2 seconds as defined by CRS-R criteria. RESULTS: Patients without fixation showed metabolic dysfunction in a widespread fronto-parietal cortical network (with only sparing of the brainstem and cerebellum) which was not different from the brain function seen in patients with visual fixation. Cortico-cortical functional connectivity with visual cortex showed no difference between both patient groups. Recovery rates did not differ between patients without or with fixation (none of the patients showed good outcome). CONCLUSIONS: Our findings suggest that sustained visual fixation in (non-traumatic) disorders of consciousness does not necessarily reflect consciousness and higher order cortical brain function

    Predictive utility of an adapted Marshall head CT classification scheme after traumatic brain injury

    Get PDF
    Objective: To study the predictive relationship among persons with traumatic brain injury (TBI) between an objective indicator of injury severity (the adapted Marshall computed tomography [CT] classification scheme) and clinical indicators of injury severity in the acute phase, functional outcomes at inpatient rehabilitation discharge, and functional and participation outcomes at 1 year after injury, including death.Participants: The sample involved 4895 individuals who received inpatient rehabilitation following acute hospitalization for TBI and were enrolled in the Traumatic Brain Injury Model Systems National Database between 1989 and 2014.Design: Head CT variables for each person were fit into adapted Marshall CT classification categories I through IV.Main Measures: Prediction models were developed to determine the amount of variability explained by the CT classification categories compared with commonly used predictors, including a clinical indicator of injury severity.Results: The adapted Marshall classification categories aided only in the prediction of craniotomy or craniectomy during acute hospitalization, otherwise making no meaningful contribution to variance in the multivariable models predicting outcomes at any time point after injury.Conclusion: Results suggest that head CT findings classified in this manner do not inform clinical discussions related to functional prognosis or rehabilitation planning after TBI

    Functional Brain Imaging in the Clinical Assessment of Consciousness

    Get PDF
    Recent findings suggest that functional brain imaging might be used to identify consciousness in patients diagnosed with persistent vegetative state and minimally conscious state. Michael Rafii and James Brewer discuss the potential for fMRI's wider implementation in clinical practice, and associated caveats

    Detecting Awareness in the Vegetative State: Electroencephalographic Evidence for Attempted Movements to Command

    Get PDF
    Patients in the Vegetative State (VS) do not produce overt motor behavior to command and are therefore considered to be unaware of themselves and of their environments. However, we recently showed that high-density electroencephalography (EEG) can be used to detect covert command-following in some VS patients. Due to its portability and inexpensiveness, EEG assessments of awareness have the potential to contribute to a standard clinical protocol, thus improving diagnostic accuracy. However, this technique requires refinement and optimization if it is to be used widely as a clinical tool. We asked a patient who had been repeatedly diagnosed as VS for 12-years to try to move his left and right hands, between periods of rest, while EEG was recorded from four scalp electrodes. We identified appropriate and statistically reliable modulations of sensorimotor beta rhythms following commands to try to move, which could be significantly classified at a single-trial level. These reliable effects indicate that the patient attempted to follow the commands, and was therefore aware, but was unable to execute an overtly discernable action. The cognitive demands of this novel task are lower than those used previously and, crucially, allow for awareness to be determined on the basis of a 20-minute EEG recording made with only four electrodes. This approach makes EEG assessments of awareness clinically viable, and therefore has potential for inclusion in a standard assessment of awareness in the VS

    Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    Get PDF
    In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis

    A Bayesian statistical analysis of behavioral facilitation associated with deep brain stimulation

    Get PDF
    Deep brain stimulation (DBS) is an established therapy for Parkinson's Disease and is being investigated as a treatment for chronic depression, obsessive compulsive disorder and for facilitating functional recovery of patients in minimally conscious states following brain injury. For all of these applications, quantitative assessments of the behavioral effects of DBS are crucial to determine whether the therapy is effective and, if so, how stimulation parameters can be optimized. Behavioral analyses for DBS are challenging because subject performance is typically assessed from only a small set of discrete measurements made on a discrete rating scale, the time course of DBS effects is unknown, and between-subject differences are often large. We demonstrate how Bayesian state-space methods can be used to characterize the relationship between DBS and behavior comparing our approach with logistic regression in two experiments: the effects of DBS on attention of a macaque monkey performing a reaction-time task, and the effects of DBS on motor behavior of a human patient in a minimally conscious state. The state-space analysis can assess the magnitude of DBS behavioral facilitation (positive or negative) at specific time points and has important implications for developing principled strategies to optimize DBS paradigms.National Institutes of Health (U.S.)(R01 MH-071847)National Institutes of Health (U.S.) (DP1 OD003646)National Institutes of Health (U.S.)(NS02172)IntElect Medical (Firm

    Comparison of the Full Outline of UnResponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an Intensive Care Unit Population.

    Full text link
    peer reviewedBACKGROUND: The Full Outline of UnResponsiveness (FOUR) has been proposed as an alternative for the Glasgow Coma Scale (GCS)/Glasgow Liege Scale (GLS) in the evaluation of consciousness in severely brain-damaged patients. We compared the FOUR and GLS/GCS in intensive care unit patients who were admitted in a comatose state. METHODS: FOUR and GLS evaluations were performed in randomized order in 176 acutely (<1 month) brain-damaged patients. GLS scores were transformed in GCS scores by removing the GLS brainstem component. Inter-rater agreement was assessed in 20% of the studied population (N = 35). A logistic regression analysis adjusted for age, and etiology was performed to assess the link between the studied scores and the outcome 3 months after injury (N = 136). RESULTS: GLS/GCS verbal component was scored 1 in 146 patients, among these 131 were intubated. We found that the inter-rater reliability was good for the FOUR score, the GLS/GCS. FOUR, GLS/GCS total scores predicted functional outcome with and without adjustment for age and etiology. 71 patients were considered as being in a vegetative/unresponsive state based on the GLS/GCS. The FOUR score identified 8 of these 71 patients as being minimally conscious given that these patients showed visual pursuit. CONCLUSIONS: The FOUR score is a valid tool with good inter-rater reliability that is comparable to the GLS/GCS in predicting outcome. It offers the advantage to be performable in intubated patients and to identify non-verbal signs of consciousness by assessing visual pursuit, and hence minimal signs of consciousness (11% in this study), not assessed by GLS/GCS scales
    • …
    corecore