1,136 research outputs found

    Performance prediction of point-based three-dimensional volumetric measurement systems

    Get PDF
    Point-based three-dimensional volumetric measurement systems are defined as multi-view vision systems which reconstruct a three-dimensional scene by first identifying key points on the views and then performing the reconstruction. Examples of these are defocusing digital particle image velocimetry (DDPIV) (Pereira et al 2000 Exp. Fluids 29 S78–84) and 3D particle tracking velocimetry (3DPTV) (Papantoniou and Maas 1990 5th Int. Symp. on the Application of Laser Techniques in Fluid Mechanics) which reconstruct clouds of flow tracers in order to estimate flow velocities. The reconstruction algorithms in these systems are variations of an epipolar line search. This paper presents a generalized error analysis of such methods, both in reconstruction precision (error in the reconstructed scene) and reconstruction quality (number of ambiguities or 'ghosts' produced)

    Compressible Flows in Fluidic Oscillators

    Get PDF
    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. This is part of the fluid dynamics videos.Comment: Videos include

    Estimation of elastic and viscous properties of the left ventricle based on annulus plane harmonic behavior

    Get PDF
    Assessment of left ventricular (LV) function with an emphasis on contractility has been a challenge in cardiac mechanics during the recent decades. The LV function is usually described by the LV pressurevolume (P-V) diagram. The standard P-V diagrams are easy to interpret but difficult to obtain and require invasive instrumentation for measuring the corresponding volume and pressure data. In the present study, we introduce a technique that can estimate the viscoelastic properties of the LV based on harmonic behavior of the ventricular chamber and it can be applied non-invasively as well. The estimation technique is based on modeling the actual long axis displacement of the mitral annulus plane toward the cardiac base as a linear damped oscillator with time-varying coefficients. The time-varying parameters of the model were estimated by a standard Recursive Linear Least Squares (RLLS) technique. LV stiffness at end-systole and end diastole was in the range of 61.86-136.00 dyne/g.cm and 1.25-21.02 dyne/g.cm, respectively. The only input used in this model was the long axis displacement of the annulus plane, which can also be obtained non-invasively using tissue Doppler or MR imaging

    Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers

    Get PDF
    We report some experiments undertaken to investigate the origin of ordered and chaotic laminar vortex streets behind circular cylinders at low Reynolds numbers. We made simultaneous measurements of near wake longitudinal velocity and cylinder lateral vibration amplitude spectra for cylinder Reynolds numbers in the range from 40 to 160. For a non-vibrating cylinder the velocity energy spectra contained only a single peak, at the Strouhal frequency. When the cylinder was observed to vibrate in response to forcing by the vortex wake, additional dominant spectral peaks appeared in the resulting ‘ordered’ velocity spectra. Cylinder vibrations too small to be noticed with the naked eye or from audible Aeolian tones produced a coupled wake-cylinder response with dramatic effects in hot-wire and cylinder vibration detector signals. The velocity spectra associated with these coupled motions had dominant peaks at the Strouhal frequency fs, at a frequency fc proportional to the fundamental cylinder vibration frequency, and at sum and difference combinations of multiples of fs and fc. In windows of chaos the velocity spectra were broadened by switching between different competing coupling modes. The velocity spectra were very sensitive to the nature of the boundary conditions at the ends of the cylinder. Our measurements strongly suggest that the very similar regions of ‘order’ and ‘chaos’ observed by Sreenivasan and interpreted by him as transition through quasi-periodic states in the sense of the Ruelle, Takens, and Newhouse theory were also due to aeroelastic coupling of the vortex wake with cylinder vibration modes

    Chaos in Shear Flows

    Get PDF
    Almost 25 years ago Lorenz published his seminal study on the existence of a strange attractor in the phase space of a severely truncated model system arising from the hydrodynamical equations describing two-dimensional convection. Nearly a century ago Poincare published his famous treatise Les Methodes Noovelles de la Mecaniaue Celeste (1892) in which the possible complexity of behavior in nonintegrable, conservative systems was first envisioned. Both these works address an age old puzzle: How do apparently stochastic outputs arise from an entirely deterministic system subject to non-stochastic inputs

    Analytical and experimental investigations of dual-plane PIV

    Get PDF
    In its 'classical' form particle image velocimetry (PIV) extracts two components of the flow velocity vector by measuring the displacement of tracer particles within a double-pulsed laser light sheet. The method described in this paper is based on the additional recording of a third exposure of the tracer particles in a parallel light sheet, which is slightly displaced with respect to the first one. The particle images resulting from these three exposures are stored on separate frames. The locations of the correlation peaks, as obtained by cross-correlation methods, are used to determine the projections of the velocity vectors onto the plane between both light sheets. In the manner described below, the amplitudes of these peaks are used to obtain information about the velocity component perpendicular to the light sheet planes. The mathematical background of this method is described in the paper. Numerical simulations show the influence of the main parameters (e.g. light sheet thickness, light sheet displacement and out-of-plane component) on the resolution and reliability of the new method. Two different recording procedures and their results will be shown to demonstrate the ease of operation when applying this technique to liquid flows

    Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils

    Get PDF
    The effects of softwood-derived biochar materials on the chemical behaviour of environmental contaminants in soils were examined in two microcosm scenarios. Addition of the biochar materials into an alkaline sandy soil significantly reduced NH3 volatilization and made it available for conversion into NO3- via nitrification. This process could be enhanced by an increased application rate of biochar produced at a higher pyrolysis temperature. Under the alkaline conditions encountered in the experiment, the biochar surfaces tended to be negatively charged which disfavours the adsorption of NO3-. Therefore, in a fully open system, the addition of biochar materials was likely to contribute to nitrate leaching from the fertilized alkaline sandy soil. The effects of the biochar materials on the immobilization of Fe2+ generated via anaerobic iron reduction in the inundated contaminated soil were not observed, except for the treatment with a higher dose of biochar material produced under pyrolysis temperature at 700°C after the 240th h of incubation. Arsenic showed similar behaviour to Fe. Zn tended to have a higher affinity to the biochar, as compared to Mn. Immobilization of Pb occurred regardless of whether or not the biochar is present
    • 

    corecore