21 research outputs found

    Effect of photodiode angular response on surface plasmon resonance measurements in the Kretschmann-Raether configuration

    Get PDF
    We study the effect of photodiode angular response on the measurement of surface plasmon resonance (SPR) in metallic thin films using the Kretschmann-Raether configuration. The photodiode signal depends not only on the light intensity but also on the incidence angle. This mplies that the photodiode sensitivity changes along the SPR curve. Consequently, the measured SPR spectrum is distorted, thus affecting fits and numerical analyses of SPR curves. We analyze the magnitude of this change, determine when it is significant, and develop a calibration method of the experimental setup which corrects for this type of spectral shape distortions

    The Potential Anti-remodeling Effect of Paroxetine After Myocardial Infarction May Be Blunted by Beta-Blockers

    No full text
    Background: Left ventricular (LV) remodeling consists in maladaptive changes in cardiac geometry and function following an insult such as ST-segment elevation myocardial infarction (STEMI). Interventions able to prevent LV remodeling after a STEMI are expected to improve the outcome of this condition. Paroxetine has inhibitory effects on GRK2, also known as beta-adrenergic receptor kinase 1 (ADRBK1). This drug does not yield beneficial effects on LV remodeling in patients with STEMI and LV ejection fraction ≤ 45%. Methods: We compared the molecular effects of paroxetine and drugs for neurohormonal antagonism (beta-blockers, angiotensin converting enzyme inhibitors/angiotensin receptor blockers, mineralocorticoid receptor antagonists), using a bioinformatic approach integrating transcriptomic data in a swine model of post-MI and available evidence from the literature and massive public databases. Results: Among standard therapies for MI, beta-blockers are the only ones acting directly upon GKR2, but the mechanism of action overlaps with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers with respect to the AT2R-mediated anti-hypertensive response. Moreover, beta-blockers could have anti-fibrotic and anti-inflammatory effects through the regulation of myocyte-specific enhancer factors, endothelins and chemokines. Conclusion: The additive benefit of paroxetine on the background of the standard therapy for STEMI, which includes beta-blockers, is expected to be limited. Nonetheless, paroxetine becomes particularly interesting when a beta-blocker is contraindicated (for example, in hypotensive individuals) or poorly tolerated

    Cardiac protection by pirfenidone after myocardial infarction: a bioinformatic analysis

    No full text
    Left ventricular (LV) remodeling after myocardial infarction (MI) is promoted by an intense fibrotic response, which could be targeted by the anti-fibrotic drug pirfenidone. We explored the relationship between protein modulation by pirfenidone and post-MI remodeling, based on molecular information and transcriptomic data from a swine model of MI. We identified 6 causative motives of post-MI remodeling (cardiomyocyte cell death, impaired myocyte contractility, extracellular matrix remodeling and fibrosis, hypertrophy, renin–angiotensin–aldosterone system activation, and inflammation), 4 pirfenidone targets and 21 bioflags (indirect effectors). Pirfenidone had a more widespread action than gold-standard drugs, encompassing all 6 motives, with prominent effects on p38γ-MAPK12, the TGFβ1-SMAD2/3 pathway and other effector proteins such as matrix metalloproteases 2 and 14, PDGFA/B, and IGF1. A bioinformatic approach allowed to identify several possible mechanisms of action of pirfenidone with beneficial effects in the post-MI LV remodeling, and suggests additional effects over guideline-recommended therapies
    corecore