6 research outputs found

    Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium subterraneum

    Get PDF
    Tropospheric ozone is a major air pollutant affecting plants worldwide. Plants in northern regions can display more ozone injury than plants at lower latitudes despite lower ozone levels. Larger ozone influx and shorter nights have been suggested as possible causes. However, the effects of the dim light present during northern summer nights have not been investigated. Young Trifolium subterraneum plants kept in environmentally controlled growth rooms under long day (10 h bright light, 14 h dim light) or short day (10 h bright light, 14 h darkness) conditions were exposed to 6 h of 70 ppb ozone during daytime for three consecutive days. Leaves were visually inspected and imaged in vivo using thermal imaging before and after the daily exposure. In long-day-treated plants, visible foliar injury within 1 week after exposure was more severe. Multivariate statistical analyses showed that the leaves of ozone-exposed long-day-treated plants were also warmer with more homogeneous temperature distributions than exposed short day and control plants, suggesting reduced transpiration. Temperature disruptions were not restricted to areas displaying visible damage and occurred even in leaves with only slight visible injury. Ozone did not affect the leaf temperature of short-day-treated plants. As all factors influencing ozone influx were the same for long- and short-day-treated plants, only the dim nocturnal light could account for the different ozone sensitivities. Thus, the twilight summer nights at high latitudes may have a negative effect on repair and defence processes activated after ozone exposure, thereby enhancing sensitivity

    Phenotyping for Root Traits

    No full text
    Root system architecture determines crop capacity to acquire water and nutrients in the dynamic and variable soil environment. Increasing attention is paid to searching for optimal root traits to improve resource uptake efficiency and adaptation to heterogeneous soil conditions. This chapter summarises genetic variability and plasticity in root traits relevant to increased efficiency of soil resource acquisition. Approaches available for high-throughput phenotyping of root architecture traits at both laboratory and field scales are critically assessed. The advent of several novel imaging technologies such as X-ray computed tomography coupled with image-analysing software packages offers a great opportunity to non-invasively assess root architecture and its interactions with soil environments. The use of three-dimensional structure–function simulation root models is complementary to phenotyping methods, providing assistance in the crop breeding programmes. We also discuss applications and limitations of these novel visualisation technologies in characterising root growth and the root–soil interactions
    corecore