419 research outputs found
How to Couple from the Past Using a Read-Once Source of Randomness
We give a new method for generating perfectly random samples from the
stationary distribution of a Markov chain. The method is related to coupling
from the past (CFTP), but only runs the Markov chain forwards in time, and
never restarts it at previous times in the past. The method is also related to
an idea known as PASTA (Poisson arrivals see time averages) in the operations
research literature. Because the new algorithm can be run using a read-once
stream of randomness, we call it read-once CFTP. The memory and time
requirements of read-once CFTP are on par with the requirements of the usual
form of CFTP, and for a variety of applications the requirements may be
noticeably less. Some perfect sampling algorithms for point processes are based
on an extension of CFTP known as coupling into and from the past; for
completeness, we give a read-once version of coupling into and from the past,
but it remains unpractical. For these point process applications, we give an
alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure
Knot Graphs
We consider the equivalence classes of graphs induced by the unsigned
versions of the Reidemeister moves on knot diagrams.
Any graph which is
reducible by some finite sequence of these moves, to a graph with no
edges is called a knot graph. We show that the class of knot graphs
strictly contains the set of delta-wye graphs. We prove that the
dimension of the intersection of the cycle and cocycle spaces is an
effective numerical invariant of these classes
Hamilton Cycles in a Class of Random Directed Graphs
AbstractWe prove that almost every 3-in, 3-out digraph is Hamiltonian
Discordant voting processes on finite graphs
We consider an asynchronous voting process on graphs which we call discordant voting, and which can be described as follows. Initially each vertex holds one of two opinions, red or blue say. Neighbouring vertices with different opinions interact pairwise. After an interaction both vertices have the same colour. The quantity of interest is T, the time to reach consensus, i.e. the number of interactions needed for all vertices have the same colour. An edge whose endpoint colours differ (i.e. one vertex is coloured red and the other one blue) is said to be discordant. A vertex is discordant if its is incident with a discordant edge. In discordant voting, all interactions are based on discordant edges. Because the voting process is asynchronous there are several ways to update the colours of the interacting vertices. Push: Pick a random discordant vertex and push its colour to a random discordant neighbour. Pull: Pick a random discordant vertex and pull the colour of a random discordant neighbour. Oblivious: Pick a random endpoint of a random discordant edge and push the colour to the other end point. We show that ET, the expected time to reach consensus, depends strongly on the underlying graph and the update rule. For connected graphs on n vertices, and an initial half red, half blue colouring the following hold. For oblivious voting, ET = n2/4 independent of the underlying graph. For the complete graph Kn, the push protocol has ET = =(n log n), whereas the pull protocol has ET = =(2n). For the cycle Cn all three protocols have ET = =(n2). For the star graph however, the pull protocol has ET = O(n2), whereas the push protocol is slower with ET = =(n2 log n). The wide variation in ET for the pull protocol is to be contrasted with the well known model of synchronous pull voting, for which ET = O(n) on many classes of expanders
The Power of Two Choices in Distributed Voting
Distributed voting is a fundamental topic in distributed computing. In pull
voting, in each step every vertex chooses a neighbour uniformly at random, and
adopts its opinion. The voting is completed when all vertices hold the same
opinion. On many graph classes including regular graphs, pull voting requires
expected steps to complete, even if initially there are only two
distinct opinions.
In this paper we consider a related process which we call two-sample voting:
every vertex chooses two random neighbours in each step. If the opinions of
these neighbours coincide, then the vertex revises its opinion according to the
chosen sample. Otherwise, it keeps its own opinion. We consider the performance
of this process in the case where two different opinions reside on vertices of
some (arbitrary) sets and , respectively. Here, is the
number of vertices of the graph.
We show that there is a constant such that if the initial imbalance
between the two opinions is ?, then with high probability two sample voting completes in a random
regular graph in steps and the initial majority opinion wins. We
also show the same performance for any regular graph, if where is the second largest eigenvalue of the transition
matrix. In the graphs we consider, standard pull voting requires
steps, and the minority can still win with probability .Comment: 22 page
Parameter estimators of random intersection graphs with thinned communities
This paper studies a statistical network model generated by a large number of
randomly sized overlapping communities, where any pair of nodes sharing a
community is linked with probability via the community. In the special case
with the model reduces to a random intersection graph which is known to
generate high levels of transitivity also in the sparse context. The parameter
adds a degree of freedom and leads to a parsimonious and analytically
tractable network model with tunable density, transitivity, and degree
fluctuations. We prove that the parameters of this model can be consistently
estimated in the large and sparse limiting regime using moment estimators based
on partially observed densities of links, 2-stars, and triangles.Comment: 15 page
Boosting search by rare events
Randomized search algorithms for hard combinatorial problems exhibit a large
variability of performances. We study the different types of rare events which
occur in such out-of-equilibrium stochastic processes and we show how they
cooperate in determining the final distribution of running times. As a
byproduct of our analysis we show how search algorithms are optimized by random
restarts.Comment: 4 pages, 3 eps figures. References update
A proposed intense slow positron source based on 58Co
Positron beams have proven very useful for condensed matter and surface research. The highest intensity of the current operating positron beams is ∼109 slow e+/second. The goal of our proposal is to build an Intense Slow Positron Source (ISPS) demonstration beam (Phase I) of unprecedented brightness at the Idaho National Engineering Laboratory, INEL (up to 1010 slow e+/s at 5 keV over a <0.03 cm. diameter). This Phase I beam will prove the principles necessary to build a larger facility scale ISPS Phase II beam which will have a potential of 1013 e+/s, or ≳1012 e+/s over 0.03 cm. The INEL is an ideal location for the ISPS because of the fast breeder reactor EBR‐II, which is perfectly suited to creating the positron emitting isotope 58Co, and the excellent radioactive materials handling capability and expertise. Sufficient expertise is available at INEL for the construction and operation of a user facility (Phase II).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87604/2/289_1.pd
Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach
The subset sum problem (SSP) can be briefly stated as: given a target integer
and a set containing positive integer , find a subset of
summing to . The \textit{density} of an SSP instance is defined by the
ratio of to , where is the logarithm of the largest integer within
. Based on the structural and statistical properties of subset sums, we
present an improved enumeration scheme for SSP, and implement it as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces an
instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can
efficiently solve arbitrary density instance in a uniform way. Furthermore, our
algorithm has considerable performance advantage over previous algorithms.
Firstly, it extends the density scope, in which SSP can be solved in expected
polynomial time. Specifically, It solves SSP in expected time
when density , while the previously best
density scope is . In addition, the overall
expected time and space requirement in the average case are proven to be
and respectively. Secondly, in the worst case, it
slightly improves the previously best time complexity of exact algorithms for
SSP. Specifically, the worst-case time complexity of our algorithm is proved to
be , while the previously best result is .Comment: 11 pages, 1 figur
- …