298 research outputs found

    The geometry of the limit of N=2 minimal models

    Full text link
    We consider the limit of two-dimensional N=(2,2) superconformal minimal models when the central charge approaches c=3. Starting from a geometric description as non-linear sigma models, we show that one can obtain two different limit theories. One is the free theory of two bosons and two fermions, the other one is a continuous orbifold thereof. We substantiate this claim by detailed conformal field theory computations.Comment: 35 pages, 3 figures; v2 minor corrections, version to be published in J. Phys.

    Defect flows in minimal models

    Full text link
    In this paper we study a simple example of a two-parameter space of renormalisation group flows of defects in Virasoro minimal models. We use a combination of exact results, perturbation theory and the truncated conformal space approach to search for fixed points and investigate their nature. For the Ising model, we confirm the recent results of Fendley et al. In the case of central charge close to one, we find six fixed points, five of which we can identify in terms of known defects and one of which we conjecture is a new non-trivial conformal defect. We also include several new results on exact properties of perturbed defects and on the renormalisation group in the truncated conformal space approach.Comment: 35 pages, 21 figures. 1 reference adde

    DBI analysis of generalised permutation branes

    Get PDF
    We investigate D-branes on the product GxG of two group manifolds described as Wess-Zumino-Novikov-Witten models. When the levels of the two groups coincide, it is well known that there exist permutation D-branes which are twisted by the automorphism exchanging the two factors. When the levels are different, the D-brane charge group demands that there should be generalisations of these permutation D-branes, and a geometric construction for them was proposed in hep-th/0509153. We give further evidence for this proposal by showing that the generalised permutation D-branes satisfy the Dirac-Born-Infeld equations of motion for arbitrary compact, simply connected and simple Lie groups G.Comment: 19 pages, computation in section 3.5.1 corrected, conclusions unchange

    Twisted brane charges for non-simply connected groups

    Get PDF
    The charges of the twisted branes for strings on the group manifold SU(n)/Z_d are determined. To this end we derive explicit (and remarkably simple) formulae for the relevant NIM-rep coefficients. The charge groups of the twisted and untwisted branes are compared and found to agree for the cases we consider.Comment: 30 page

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Bulk flows in Virasoro minimal models with boundaries

    Full text link
    The behaviour of boundary conditions under relevant bulk perturbations is studied for the Virasoro minimal models. In particular, we consider the bulk deformation by the least relevant bulk field which interpolates between the mth and (m-1)st unitary minimal model. In the presence of a boundary this bulk flow induces an RG flow on the boundary, which ensures that the resulting boundary condition is conformal in the (m-1)st model. By combining perturbative RG techniques with insights from defects and results about non-perturbative boundary flows, we determine the endpoint of the flow, i.e. the boundary condition to which an arbitrary boundary condition of the mth theory flows to.Comment: 34 pages, 6 figures. v4: Typo in fig. 2 correcte

    Prima Facie Questions in Quantum Gravity

    Full text link
    The long history of the study of quantum gravity has thrown up a complex web of ideas and approaches. The aim of this article is to unravel this web a little by analysing some of the {\em prima facie\/} questions that can be asked of almost any approach to quantum gravity and whose answers assist in classifying the different schemes. Particular emphasis is placed on (i) the role of background conceptual and technical structure; (ii) the role of spacetime diffeomorphisms; and (iii) the problem of time.Comment: 20,IC/TP/0

    Defect loops in gauged Wess-Zumino-Witten models

    Get PDF
    We consider loop observables in gauged Wess-Zumino-Witten models, and study the action of renormalization group flows on them. In the WZW model based on a compact Lie group G, we analyze at the classical level how the space of renormalizable defects is reduced upon the imposition of global and affine symmetries. We identify families of loop observables which are invariant with respect to an affine symmetry corresponding to a subgroup H of G, and show that they descend to gauge-invariant defects in the gauged model based on G/H. We study the flows acting on these families perturbatively, and quantize the fixed points of the flows exactly. From their action on boundary states, we present a derivation of the "generalized Affleck-Ludwig rule, which describes a large class of boundary renormalization group flows in rational conformal field theories.Comment: 43 pages, 2 figures. v2: a few typos corrected, version to be published in JHE

    D-branes on a Deformation of SU(2)

    Get PDF
    We discuss D-branes on a line of conformal field theories connected by an exact marginal deformation. The line contains an SU(2) WZW model and two mutually T-dual SU(2)/U(1) cosets times a free boson. We find the D-branes preserving a U(1) isometry, an F-flux quantization condition and conformal invariance. Away from the SU(2) point a U(1) times U(1) symmetry is broken to U(1) times Z_k, i.e. continuous rotations of branes are accompanied by rotations along the branes. Requiring decoupling of the cosets from the free boson at the endpoints of the deformation breaks the continuous rotation of branes to Z_k. At the SU(2) point the full U(1) times U(1) symmetry is restored. This suggests the occurrence of phase transitions for branes at angles in the coset model, at a semiclassical level. We also discuss briefly the orientifold planes along the deformation line.Comment: 19 pages, latex, 5 figures, references adde

    Polymer state approximations of Schroedinger wave functions

    Get PDF
    It is shown how states of a quantum mechanical particle in the Schroedinger representation can be approximated by states in the so-called polymer representation. The result may shed some light on the semiclassical limit of loop quantum gravity.Comment: 11 pages, 1 figure, Conclusions section adde
    • 

    corecore