2 research outputs found

    Superconductivity Phase Diagram of Na(x)CoO(2).1.3H(2)O

    Full text link
    Although the microscopic origin of the superconductivity in high Tc copper oxides remains the subject of active inquiry, several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics is the dependence of the superconducting transition temperature on the degree of electronic band filling. Since the discovery of cuprate superconductivity in 1986 (1), the search for other families of superconductors that might help shed light on the superconducting mechanism of the cuprates has been of great interest. The recent report of superconductivity near 4K in the triangular lattice, layered sodium cobalt oxyhydrate, Na0.35CoO2.1.3H2O, is the best indication that superconductors related to the cuprates may be found (2). Here we show that the superconducting transition temperature of this compound displays the same kind of band-filling behavior that is observed in the cuprates. Specifically, that the optimal superconducting Tc occurs in a narrow range of band filling, and decreases for both underdoped and overdoped materials, in dramatic analogy to the phase diagram of the cuprate superconductors. Our results suggest that characterization of the detailed electronic and magnetic behavior of these new materials may help establish which of the many special characteristics of the cuprates is fundamental to their high Tc superconductivity.Comment: revised, publication information adde

    Chemical Instability of the Cobalt Oxyhydrate Superconductor under Ambient Conditions

    Full text link
    The layered sodium cobalt oxyhydrate superconductor Na0.3CoO2*1.4H2O is shown through X-ray diffraction and thermogravimetric studies to be one of a series of hydrated phases of Na0.3CoO2. Further, it is shown that the material is exceptionally sensitive to both temperature and humidity near ambient conditions, easily dehydrating to a non-superconducting lower hydrate. The observation of this stable lower hydrate with c=13.8 angstroms implies that the superconductivity turns on in this system between CoO2 layer spacings of 6.9 and 9.9 angstroms at nominally constant chemical doping.Comment: 10 pages and 4 figure
    corecore