11 research outputs found

    CpG-island methylation study of liver fluke-related cholangiocarcinoma

    Get PDF
    Background: Genetic changes have been widely reported in association with cholangiocarcinoma (CCA), while epigenetic changes are poorly characterised. We aimed to further evaluate CpG-island hypermethylation in CCA at candidate loci, which may have potential as diagnostic or prognostic biomarkers. Methods: We analysed methylation of 26 CpG-islands in 102 liver fluke related-CCA and 29 adjacent normal samples using methylation-specific PCR (MSP). Methylation of interest loci was confirmed using pyrosequencing and/or combined bisulfite restriction analysis, and protein expression by immunohistochemistry. Results: A number of CpG-islands (OPCML, SFRP1, HIC1, PTEN and DcR1) showed frequency of hypermethylation in >28% of CCA, but not adjacent normal tissues. The results showed that 91% of CCA were methylated in at least one CpG-island. The OPCML was the most frequently methylated locus (72.5%) and was more frequently methylated in less differentiated CCA. Patients with methylated DcR1 had significantly longer overall survival (Median; 41.7 vs 21.7 weeks, P=0.027). Low-protein expression was found in >70% of CCA with methylation of OPCML or DcR1. Conclusion: Aberrant hypermethylation of certain loci is a common event in liver fluke-related CCA and may potentially contribute to cholangiocarcinogenesis. The OPCML and DcR1 might serve as methylation biomarkers in CCA that can be readily examined by MSP

    A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer

    Get PDF
    Background: DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported. Methodology/Principal Findings: The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to "neurogenesis" and "cell differentiation" by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples. Conclusions/Significance: We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research
    corecore