352 research outputs found
Effective theories for real-time correlations in hot plasmas
We discuss the sequence of effective theories needed to understand the
qualitative, and quantitative, behavior of real-time correlators
in ultra-relativistic plasmas. We analyze in detail the case where A is a
gauge-invariant conserved current. This case is of interest because it includes
a correlation recently measured in lattice simulations of classical, hot,
SU(2)-Higgs gauge theory. We find that simple perturbation theory, free kinetic
theory, linearized kinetic theory, and hydrodynamics are all needed to
understand the correlation for different ranges of time. We emphasize how
correlations generically have power-law decays at very large times due to
non-linear couplings to long-lived hydrodynamic modes.Comment: 28 pages, Latex, uses revtex, epsf macro packages [Revised version: t
-> sqrt{t} in a few typos on p. 10.
Lifetime of quasiparticles in hot QED plasmas
The calculation of the lifetime of quasiparticles in a QED plasma at high
temperature remains plagued with infrared divergences, even after one has taken
into account the screening corrections. The physical processes responsible for
these divergences are the collisions involving the exchange of very soft,
unscreened, magnetic photons, whose contribution is enhanced by the thermal
Bose-Einstein occupation factor. The self energy diagrams which diverge in
perturbation theory contain no internal fermion loops, but an arbitrary number
of internal magnetostatic photon lines. By generalizing the Bloch-Nordsieck
model at finite temperature, we can resum all the singular contributions of
such diagrams, and obtain the correct long time behaviour of the retarded
fermion propagator in the hot QED plasma: , where is the plasma frequency and
.Comment: 13 pages, LaTe
Transport Theory of Massless Fields
Using the Schwinger-Keldysh technique we discuss how to derive the transport
equations for the system of massless quantum fields. We analyse the scalar
field models with quartic and cubic interaction terms. In the model
the massive quasiparticles appear due to the self-interaction of massless bare
fields. Therefore, the derivation of the transport equations strongly resembles
that one of the massive fields, but the subset of diagrams which provide the
quasiparticle mass has to be resummed. The kinetic equation for the finite
width quasiparticles is found, where, except the mean-field and collision
terms, there are terms which are absent in the standard Boltzmann equation. The
structure of these terms is discussed. In the massless model the
massive quasiparticles do not emerge and presumably there is no transport
theory corresponding to this model. It is not surprising since the
model is anyhow ill defined.Comment: 32 pages, no macro
Soft Electromagnetic Radiations From Equilibrating Quark-Gluon Plasma
We evaluate the bremsstrahlung production of low mass dileptons and soft
photons from equilibrating and transversely expanding quark gluon plasma which
may be created in the wake of relativistic heavy ion collisions. We use initial
conditions obtained from the self screened parton cascade model. We consider a
boost invariant longitudinal and cylindrically symmetric transverse expansion
of the parton plasma and find that for low mass dileptons ( GeV)
and soft photons ( GeV), the bremsstrahlung contribution is
rather large compared to annihilation process at both RHIC and LHC energies. We
also find an increase by a factor of 15-20 in the low mass dileptons and soft
photons yield as one goes from RHIC to LHC energies.Comment: 8 pages, including 7 figures To appear in Phys. Rev.
Approximately self-consistent resummations for the thermodynamics of the quark-gluon plasma. I. Entropy and density
We propose a gauge-invariant and manifestly UV finite resummation of the
physics of hard thermal/dense loops (HTL/HDL) in the thermodynamics of the
quark-gluon plasma. The starting point is a simple, effectively one-loop
expression for the entropy or the quark density which is derived from the fully
self-consistent two-loop skeleton approximation to the free energy, but subject
to further approximations, whose quality is tested in a scalar toy model. In
contrast to the direct HTL/HDL-resummation of the one-loop free energy, in our
approach both the leading-order (LO) and the next-to-leading order (NLO)
effects of interactions are correctly reproduced and arise from kinematical
regimes where the HTL/HDL are justifiable approximations. The LO effects are
entirely due to the (asymptotic) thermal masses of the hard particles. The NLO
ones receive contributions both from soft excitations, as described by the
HTL/HDL propagators, and from corrections to the dispersion relation of the
hard excitations, as given by HTL/HDL perturbation theory. The numerical
evaluations of our final expressions show very good agreement with lattice data
for zero-density QCD, for temperatures above twice the transition temperature.Comment: 62 pages REVTEX, 14 figures; v2: numerous clarifications, sect. 2C
shortened, new material in sect. 3C; v3: more clarifications, one appendix
removed, alternative implementation of the NLO effects, corrected eq. (5.16
On the Quasiparticle Description of Lattice QCD Thermodynamics
We propose a novel quasiparticle interpretation of the equation of state of
deconfined QCD at finite temperature. Using appropriate thermal masses, we
introduce a phenomenological parametrization of the onset of confinement in the
vicinity of the predicted phase transition. Lattice results of the energy
density, the pressure and the interaction measure of pure SU(3) gauge theory
are excellently reproduced. We find a relationship between the thermal energy
density of the Yang-Mills vacuum and the chromomagnetic condensate _T.
Finally, an extension to QCD with dynamical quarks is discussed. Good agreement
with lattice data for 2, 2+1 and 3 flavour QCD is obtained. We also present the
QCD equation of state for realistic quark masses.Comment: 20 pages, 10 eps figure
The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition
We formulate the thermal renormalization group, an implementation of the
Wilsonian RG in the real-time (CTP) formulation of finite temperature field
theory, for fermionic fields. Using a model with scalar and fermionic degrees
of freedom which should describe the two-flavor chiral phase-transition, we
discuss the mechanism behind fermion decoupling and universality at second
order transitions. It turns out that an effective mass-like term in the fermion
propagator which is due to thermal fluctuations and does not break chiral
symmetry is necessary for fermion decoupling to work. This situation is in
contrast to the high-temperature limit, where the dominance of scalar over
fermionic degrees of freedom is due to the different behavior of the
distribution functions. The mass-like contribution is the leading thermal
effect in the fermionic sector and is missed if a derivative expansion of the
fermionic propagator is performed. We also discuss results on the
phase-transition of the model considered where we find good agreement with
results from other methods.Comment: References added, minor typos correcte
Two problems in thermal field theory
In this talk, I review recent progress made in two areas of thermal field
theory. In particular, I discuss various approaches for the calculation of the
quark gluon plasma thermodynamical properties, and the problem of its photon
production rate.Comment: 10 pages Latex document, 15 postscript figures. Invited talk given at
the 6th Workshop on High Energy Particle Physics, Chennai, India, 3-15 Jan
200
Damping Rates and Mean Free Paths of Soft Fermion Collective Excitations in a Hot Fermion-Gauge-Scalar Theory
We study the transport coefficients, damping rates and mean free paths of
soft fermion collective excitations in a hot fermion-gauge-scalar plasma with
the goal of understanding the main physical mechanisms that determine transport
of chirality in scenarios of non-local electroweak baryogenesis. The focus is
on identifying the different transport coefficients for the different branches
of soft collective excitations of the fermion spectrum. These branches
correspond to collective excitations with opposite ratios of chirality to
helicity and different dispersion relations. By combining results from the hard
thermal loop (HTL) resummation program with a novel mechanism of fermion
damping through heavy scalar decay, we obtain a robust description of the
different damping rates and mean free paths for the soft collective excitations
to leading order in HTL and lowest order in the Yukawa coupling. The space-time
evolution of wave packets of collective excitations unambiguously reveals the
respective mean free paths. We find that whereas both the gauge and scalar
contribution to the damping rates are different for the different branches, the
difference of mean free paths for both branches is mainly determined by the
decay of the heavy scalar into a hard fermion and a soft collective excitation.
We argue that these mechanisms are robust and are therefore relevant for
non-local scenarios of baryogenesis either in the Standard Model or extensions
thereof.Comment: REVTeX, 19 pages, 4 eps figures, published versio
On the screening of static electromagnetic fields in hot QED plasmas
We study the screening of static magnetic and electric fields in massless
quantum electrodynamics (QED) and massless scalar electrodynamics (SQED) at
temperature . Various exact relations for the static polarisation tensor are
first reviewed and then verified perturbatively to fifth order (in the
coupling) in QED and fourth order in SQED, using different resummation
techniques. The magnetic and electric screening masses squared, as defined
through the pole of the static propagators, are also calculated to fifth order
in QED and fourth order in SQED, and their gauge-independence and
renormalisation-group invariance is checked. Finally, we provide arguments for
the vanishing of the magnetic mass to all orders in perturbation theory.Comment: 37 pages, 8 figure
- …
