2,159 research outputs found
Shift of percolation thresholds for epidemic spread between static and dynamic small-world networks
The aim of the study was to compare the epidemic spread on static and dynamic
small-world networks. The network was constructed as a 2-dimensional
Watts-Strogatz model (500x500 square lattice with additional shortcuts), and
the dynamics involved rewiring shortcuts in every time step of the epidemic
spread. The model of the epidemic is SIR with latency time of 3 time steps. The
behaviour of the epidemic was checked over the range of shortcut probability
per underlying bond 0-0.5. The quantity of interest was percolation threshold
for the epidemic spread, for which numerical results were checked against an
approximate analytical model. We find a significant lowering of percolation
thresholds for the dynamic network in the parameter range given. The result
shows that the behaviour of the epidemic on dynamic network is that of a static
small world with the number of shortcuts increased by 20.7 +/- 1.4%, while the
overall qualitative behaviour stays the same. We derive corrections to the
analytical model which account for the effect. For both dynamic and static
small-world we observe suppression of the average epidemic size dependence on
network size in comparison with finite-size scaling known for regular lattice.
We also study the effect of dynamics for several rewiring rates relative to
latency time of the disease.Comment: 13 pages, 6 figure
Elementary processes governing the evolution of road networks
Urbanisation is a fundamental phenomenon whose quantitative characterisation
is still inadequate. We report here the empirical analysis of a unique data set
regarding almost 200 years of evolution of the road network in a large area
located north of Milan (Italy). We find that urbanisation is characterised by
the homogenisation of cell shapes, and by the stability throughout time of
high-centrality roads which constitute the backbone of the urban structure,
confirming the importance of historical paths. We show quantitatively that the
growth of the network is governed by two elementary processes: (i)
`densification', corresponding to an increase in the local density of roads
around existing urban centres and (ii) `exploration', whereby new roads trigger
the spatial evolution of the urbanisation front. The empirical identification
of such simple elementary mechanisms suggests the existence of general, simple
properties of urbanisation and opens new directions for its modelling and
quantitative description.Comment: 10 pages, 6 figure
On reductions of some KdV-type systems and their link to the quartic He'non-Heiles Hamiltonian
A few 2+1-dimensional equations belonging to the KP and modified KP
hierarchies are shown to be sufficient to provide a unified picture of all the
integrable cases of the cubic and quartic H\'enon-Heiles Hamiltonians.Comment: 12 pages, 3 figures, NATO ARW, 15-19 september 2002, Elb
A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions
Sea temperature effects on depth use and habitat selection in a marine fish community
Understanding the responses of aquatic animals to temperature variability is essential to predict impacts of future climate change and to inform conservation and management. Most ectotherms such as fish are expected to adjust their behaviour to avoid extreme temperatures and minimize acute changes in body temperature. In coastal Skagerrak, Norway, sea surface temperature (SST) ranges seasonally from 0 to over 20°C, representing a challenge to the fish community which includes cold-, cool- and warm-water affinity species.publishedVersio
Phase field modelling of stacking fault shear in nickel base superalloys
Stacking fault shear (SFS) is the dominant creep deformation mechanism in Nibase superalloys subjected to primary creep conditions (750°C, 800MPa). TEM observations1 have shown that the source of plastic strain is the shearing of they' precipitates by dislocation ribbons with overall burgers vector of a. SFS can only occur when they matrix is sufficiently saturated with a/2 dislocations. These matrix dislocations are unable to cut the y' because of the high energy APB they leave in their wake. By combining into a ribbon, shearing of the precipitates is facilitated by formation of intrinsic and extrinsic stacking faults (SISF and SESF)
A comparison of the strong lensing properties of the Sersic and the NFW profiles
We investigate the strong lensing properties of the Sersic profile as an
alternative to the NFW profile, focusing on applications to lens modelling of
clusters. Given an underlying Sersic dark matter profile, we study whether an
NFW profile can provide an acceptable fit to strong lensing constraints in the
form of single or multiple measured Einstein radii. We conclude that although
an NFW profile that fits the lensing constraints can be found in many cases,
the derived parameters may be biased. In particular, we find that for n~2,
which corresponds to massive clusters, the mass at r_200 of the best fit NFW is
overestimated (by a factor of ~2) and the concentration is very low (c~2). The
differences are important enough to warrant the inclusion of Sersic profile for
future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication
by JCA
- …