9,312 research outputs found
Measuring Technology Achievement of Nations and the Capacity to Participate in the Network Age
human development, democracy
Non-equilibrium condensation and coarsening of field-driven dipolar colloids
In colloidal suspensions, self-organization processes can be easily fueled by
external fields. One particularly interesting class of phenomena occurs in
monolayers of dipolar particles that are driven by rotating external fields.
Here we report results from a computer simulation study of such systems
focusing on the clustering behavior also observed in recent experiments. The
key result of this paper is a novel interpretation of this pattern formation
phenomenon: We show the clustering to be a by-product of a vapor-liquid first
order phase transition. In fact, the observed dynamic coarsening process
corresponds to the spindodal demixing that occurs during such a transitionComment: 6 pages, 5 figure
Theory Summary and Future Directions
Summary talk at the Lepton-Photon Symposium, Cornell University, Aug. 10-15,
1993.Comment: (Talk presented at the Lepton-Photon Symposium, Cornell University,
Aug. 10-15, 1993.) 19 page
Approximate Dynamic Programming via a Smoothed Linear Program
We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural “projection” of a well-studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program—the “smoothed approximate linear program”—is distinct from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. These bounds are, in general, no worse than those available for extant LP approaches and for specific problem instances can be shown to be arbitrarily stronger. Second, experiments with our approach on a pair of challenging problems (the game of Tetris and a queueing network control problem) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several ADP algorithms) by a substantial margin
Bounds for Markov Decision Processes
We consider the problem of producing lower bounds on the optimal cost-to-go function of a Markov decision problem. We present two approaches to this problem: one based on the methodology of approximate linear programming (ALP) and another based on the so-called martingale duality approach. We show that these two approaches are intimately connected. Exploring this connection leads us to the problem of finding "optimal" martingale penalties within the martingale duality approach which we dub the pathwise optimization (PO) problem. We show interesting cases where the PO problem admits a tractable solution and establish that these solutions produce tighter approximations than the ALP approach. © 2013 The Institute of Electrical and Electronics Engineers, Inc
A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics
We consider the problem of extracting safe environments and controllers for
reach-avoid objectives for systems with known state and control spaces, but
unknown dynamics. In a given environment, a common approach is to synthesize a
controller from an abstraction or a model of the system (potentially learned
from data). However, in many situations, the relationship between the dynamics
of the model and the \textit{actual system} is not known; and hence it is
difficult to provide safety guarantees for the system. In such cases, the
Standard Simulation Metric (SSM), defined as the worst-case norm distance
between the model and the system output trajectories, can be used to modify a
reach-avoid specification for the system into a more stringent specification
for the abstraction. Nevertheless, the obtained distance, and hence the
modified specification, can be quite conservative. This limits the set of
environments for which a safe controller can be obtained. We propose SPEC, a
specification-centric simulation metric, which overcomes these limitations by
computing the distance using only the trajectories that violate the
specification for the system. We show that modifying a reach-avoid
specification with SPEC allows us to synthesize a safe controller for a larger
set of environments compared to SSM. We also propose a probabilistic method to
compute SPEC for a general class of systems. Case studies using simulators for
quadrotors and autonomous cars illustrate the advantages of the proposed metric
for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and
Control (2019
Thyroid uptake studies in infectious hepatitis
Thyroid-function studies were done in 43 cases of infectious hepatitis with varying degree of liver damage as judged by serum bilirubin levels. A different pattern of thyroid uptakes was seen in patients with moderate liver damage and those with severe liver damage. A good correlation was observed between thyroid uptake and degree of liver damage
High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas
Ablation depths of stainless steel targets irradiated by 80-fs
laser pulses at a flux F ≤ 40 J/cm2
(intensity ≤ 5 × 1014 W/cm2)
in the presence of air at atmospheric pressure are experimentally
measured. These values are lower than the theoretical predictions
for metal targets in vacuum. Results are analyzed on the basis of
the role of the ambient gas and of crater formation on the behavior
of the ablated material
Gravity Gets There First with Dark Matter Emulators
We discuss the implications for gravity wave detectors of a class of modified
gravity theories which dispense with the need for dark matter. These models,
which are known as Dark Matter Emulators, have the property that weak
gravitational waves couple to the metric that would follow from general
relativity without dark matter whereas ordinary particles couple to a
combination of the metric and other fields which reproduces the result of
general relativity with dark matter. We show that there is an appreciable
difference in the Shapiro delays of gravitational waves and photons or
neutrinos from the same source, with the gravity waves always arriving first.
We compute the expected time lags for GRB 070201, for SN 1987a, and for Sco-X1.
We estimate the probable error by taking account of the uncertainty in
position, and by using three different dark matter profiles.Comment: 9 pages, no figures. Changes in response to referee comments. To be
published in Phys. Rev. D. under the title "Reduced time delay for
gravitational waves with dark matter emulators
- …