1,599 research outputs found

    Polynomial Time Algorithms for Branching Markov Decision Processes and Probabilistic Min(Max) Polynomial Bellman Equations

    Get PDF
    We show that one can approximate the least fixed point solution for a multivariate system of monotone probabilistic max(min) polynomial equations, referred to as maxPPSs (and minPPSs, respectively), in time polynomial in both the encoding size of the system of equations and in log(1/epsilon), where epsilon > 0 is the desired additive error bound of the solution. (The model of computation is the standard Turing machine model.) We establish this result using a generalization of Newton's method which applies to maxPPSs and minPPSs, even though the underlying functions are only piecewise-differentiable. This generalizes our recent work which provided a P-time algorithm for purely probabilistic PPSs. These equations form the Bellman optimality equations for several important classes of infinite-state Markov Decision Processes (MDPs). Thus, as a corollary, we obtain the first polynomial time algorithms for computing to within arbitrary desired precision the optimal value vector for several classes of infinite-state MDPs which arise as extensions of classic, and heavily studied, purely stochastic processes. These include both the problem of maximizing and mininizing the termination (extinction) probability of multi-type branching MDPs, stochastic context-free MDPs, and 1-exit Recursive MDPs. Furthermore, we also show that we can compute in P-time an epsilon-optimal policy for both maximizing and minimizing branching, context-free, and 1-exit-Recursive MDPs, for any given desired epsilon > 0. This is despite the fact that actually computing optimal strategies is Sqrt-Sum-hard and PosSLP-hard in this setting. We also derive, as an easy consequence of these results, an FNP upper bound on the complexity of computing the value (within arbitrary desired precision) of branching simple stochastic games (BSSGs)

    Model Checking Probabilistic Pushdown Automata

    Get PDF
    We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable

    On Verifying Causal Consistency

    Get PDF
    Causal consistency is one of the most adopted consistency criteria for distributed implementations of data structures. It ensures that operations are executed at all sites according to their causal precedence. We address the issue of verifying automatically whether the executions of an implementation of a data structure are causally consistent. We consider two problems: (1) checking whether one single execution is causally consistent, which is relevant for developing testing and bug finding algorithms, and (2) verifying whether all the executions of an implementation are causally consistent. We show that the first problem is NP-complete. This holds even for the read-write memory abstraction, which is a building block of many modern distributed systems. Indeed, such systems often store data in key-value stores, which are instances of the read-write memory abstraction. Moreover, we prove that, surprisingly, the second problem is undecidable, and again this holds even for the read-write memory abstraction. However, we show that for the read-write memory abstraction, these negative results can be circumvented if the implementations are data independent, i.e., their behaviors do not depend on the data values that are written or read at each moment, which is a realistic assumption.Comment: extended version of POPL 201

    Abstract Interpretation of Stateful Networks

    Full text link
    Modern networks achieve robustness and scalability by maintaining states on their nodes. These nodes are referred to as middleboxes and are essential for network functionality. However, the presence of middleboxes drastically complicates the task of network verification. Previous work showed that the problem is undecidable in general and EXPSPACE-complete when abstracting away the order of packet arrival. We describe a new algorithm for conservatively checking isolation properties of stateful networks. The asymptotic complexity of the algorithm is polynomial in the size of the network, albeit being exponential in the maximal number of queries of the local state that a middlebox can do, which is often small. Our algorithm is sound, i.e., it can never miss a violation of safety but may fail to verify some properties. The algorithm performs on-the fly abstract interpretation by (1) abstracting away the order of packet processing and the number of times each packet arrives, (2) abstracting away correlations between states of different middleboxes and channel contents, and (3) representing middlebox states by their effect on each packet separately, rather than taking into account the entire state space. We show that the abstractions do not lose precision when middleboxes may reset in any state. This is encouraging since many real middleboxes reset, e.g., after some session timeout is reached or due to hardware failure

    Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS

    Full text link
    Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Ī˜(nk)\Theta(n^k), for some integer kā‰¤dk\leq d, where dd is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal kk. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a kk such that the termination complexity is Ī©(nk)\Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.Comment: arXiv admin note: text overlap with arXiv:1708.0925

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    Approaching the Coverability Problem Continuously

    Get PDF
    The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In this paper, we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.Comment: 18 pages, 4 figure
    • ā€¦
    corecore