276 research outputs found

    On the prevalence of non-Gibbsian states in mathematical physics

    Get PDF
    Gibbs measures are the main object of study in equilibrium statistical mechanics, and are used in many other contexts, including dynamical systems and ergodic theory, and spatial statistics. However, in a large number of natural instances one encounters measures that are not of Gibbsian form. We present here a number of examples of such non-Gibbsian measures, and discuss some of the underlying mathematical and physical issues to which they gave rise

    Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie-Weiss model

    Get PDF
    We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics ("infinite-temperature" dynamics). We show that, in this setup, the program outlined in van Enter, Fern\'andez, den Hollander and Redig can be fully completed, namely that Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the magnetization conditioned on their endpoint. As a consequence, we show that the time-evolved model is non-Gibbs if and only if this set is not a singleton for some value of the final magnetization. A detailed description of the possible scenarios of bifurcation is given, leading to a full characterization of passages from Gibbs to non-Gibbs -and vice versa- with sharp transition times (under the dynamics Gibbsianness can be lost and can be recovered). Our analysis expands the work of Ermolaev and Kulske who considered zero magnetic field and finite-temperature spin-flip dynamics. We consider both zero and non-zero magnetic field but restricted to infinite-temperature spin-flip dynamics. Our results reveal an interesting dependence on the interaction parameters, including the presence of forbidden regions for the optimal trajectories and the possible occurrence of overshoots and undershoots in the optimal trajectories. The numerical plots provided are obtained with the help of MATHEMATICA.Comment: Key words and phrases: Curie-Weiss model, spin-flip dynamics, Gibbs vs. non-Gibbs, dynamical transition, large deviations, action integral, bifurcation of rate functio

    Scaling and Inverse Scaling in Anisotropic Bootstrap percolation

    Full text link
    In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.Comment: Contribution to the proceedings of the 2013 EURANDOM workshop Probabilistic Cellular Automata: Theory, Applications and Future Perspectives, equation typo corrected, constant of generalisation correcte

    Aperiodicity in equilibrium systems: Between order and disorder

    Full text link
    Spatial aperiodicity occurs in various models and material s. Although today the most well-known examples occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related to the notion and occurrence of aperiodic order in equilibrium statistical mechanics. In particular, we consider some spectral characterisations,and shortly review what is known about the occurrence of aperiodic order in lattice models at zero and non-zero temperatures. At the end some more speculative connections to the theory of (spin-)glasses are indicated.Comment: Contribution to ICQ12, some corrections and explanatory remarks adde

    The Renormalization-Group peculiarities of Griffiths and Pearce: What have we learned?

    Get PDF
    We review what we have learned about the "Renormalization-Group peculiarities" which were discovered about twenty years ago by Griffiths and Pearce, and which questions they asked are still widely open. We also mention some related developments.Comment: Proceedings Marseille meeting on mathematical results in statistical mechanic

    A remark on the notion of robust phase transitions

    Get PDF
    We point out that the high-q Potts model on a regular lattice at its transition temperature provides an example of a non-robust - in the sense recently proposed by Pemantle and Steif- phase transition

    Gibbs-non-Gibbs transitions via large deviations: computable examples

    Get PDF
    We give new and explicitly computable examples of Gibbs-non-Gibbs transitions of mean-field type, using the large deviation approach introduced in [4]. These examples include Brownian motion with small variance and related diffusion processes, such as the Ornstein-Uhlenbeck process, as well as birth and death processes. We show for a large class of initial measures and diffusive dynamics both short-time conservation of Gibbsianness and dynamical Gibbs-non-Gibbs transitions

    Low-temperature dynamics of the Curie-Weiss Model: Periodic orbits, multiple histories, and loss of Gibbsianness

    Get PDF
    We consider the Curie-Weiss model at a given initial temperature in vanishing external field evolving under a Glauber spin-flip dynamics corresponding to a possibly different temperature. We study the limiting conditional probabilities and their continuity properties and discuss their set of points of discontinuity (bad points). We provide a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending earlier work for the case of independent spin-flip dynamics. For initial temperature bigger than one we prove that the time-evolved measure stays Gibbs forever, for any (possibly low) temperature of the dynamics. In the regime of heating to low-temperatures from even lower temperatures, when the initial temperature is smaller than the temperature of the dynamics, and smaller than 1, we prove that the time-evolved measure is Gibbs initially and becomes non-Gibbs after a sharp transition time. We find this regime is further divided into a region where only symmetric bad configurations exist, and a region where this symmetry is broken. In the regime of further cooling from low-temperatures there is always symmetry-breaking in the set of bad configurations. These bad configurations are created by a new mechanism which is related to the occurrence of periodic orbits for the vector field which describes the dynamics of Euler-Lagrange equations for the path large deviation functional for the order parameter. To our knowledge this is the first example of the rigorous study of non-Gibbsian phenomena related to cooling, albeit in a mean-field setup.Comment: 31 pages, 24 figure

    Nonexistence of random gradient Gibbs measures in continuous interface models in d=2d=2

    Get PDF
    We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d=2d=2, while there are ``gradient Gibbs measures'' describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d=2d=2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d=3d=3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.Comment: Published in at http://dx.doi.org/10.1214/07-AAP446 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multiple-Layer Parking with Screening

    Full text link
    In this article a multilayer parking system with screening of size n=3 is studied with a focus on the time-dependent particle density. We prove that the asymptotic limit of the particle density increases from an average density of 1/3 on the first layer to the value of (10 - \sqrt 5 )/19 in higher layers
    corecore