7 research outputs found
Newton-Hooke spacetimes, Hpp-waves and the cosmological constant
We show explicitly how the Newton-Hooke groups act as symmetries of the
equations of motion of non-relativistic cosmological models with a cosmological
constant. We give the action on the associated non-relativistic spacetimes and
show how these may be obtained from a null reduction of 5-dimensional
homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the
Newton-Hooke groups and their Bargmann type central extensions as subgroups of
the isometry groups of the pp-wave spacetimes. The extended Schrodinger type
conformal group is identified and its action on the equations of motion given.
The non-relativistic conformal symmetries also have applications to
time-dependent harmonic oscillators. Finally we comment on a possible
application to Gao's generalization of the matrix model.Comment: 21 page
Causal structures and causal boundaries
We give an up-to-date perspective with a general overview of the theory of
causal properties, the derived causal structures, their classification and
applications, and the definition and construction of causal boundaries and of
causal symmetries, mostly for Lorentzian manifolds but also in more abstract
settings.Comment: Final version. To appear in Classical and Quantum Gravit