2 research outputs found

    Decoherence predictions in a superconductive quantum device using the steepest-entropy-ascent quantum thermodynamics framework

    Full text link
    The current stage of quantum computing technology, called noisy intermediate-scale quantum (NISQ) technology, is characterized by large errors that prohibit it from being used for real applications. In these devices, decoherence, one of the main sources of error, is generally modeled by Markovian master equations such as the Lindblad master equation. In this work, the decoherence phenomena are addressed from the perspective of the steepest-entropy-ascent quantum thermodynamics (SEAQT) framework in which the noise is in part seen as internal to the system. The framework is as well used to describe changes in the energy associated with environmental interactions. Three scenarios, an inversion recovery experiment, a Ramsey experiment, and a two-qubit entanglement-disentanglement experiment, are used to demonstrate the applicability of this framework, which provides good results relative to the experiments and the Lindblad equation, It does so, however, from a different perspective as to the cause of the decoherence. These experiments are conducted on the IBM superconductive quantum device ibmq_bogota.Comment: 11 pages, 8 figure
    corecore