9,526 research outputs found
LP-decodable multipermutation codes
In this paper, we introduce a new way of constructing and decoding
multipermutation codes. Multipermutations are permutations of a multiset that
may consist of duplicate entries. We first introduce a new class of matrices
called multipermutation matrices. We characterize the convex hull of
multipermutation matrices. Based on this characterization, we propose a new
class of codes that we term LP-decodable multipermutation codes. Then, we
derive two LP decoding algorithms. We first formulate an LP decoding problem
for memoryless channels. We then derive an LP algorithm that minimizes the
Chebyshev distance. Finally, we show a numerical example of our algorithm.Comment: This work was supported by NSF and NSERC. To appear at the 2014
Allerton Conferenc
Hardware Based Projection onto The Parity Polytope and Probability Simplex
This paper is concerned with the adaptation to hardware of methods for
Euclidean norm projections onto the parity polytope and probability simplex. We
first refine recent efforts to develop efficient methods of projection onto the
parity polytope. Our resulting algorithm can be configured to have either
average computational complexity or worst case
complexity on a serial processor where
is the dimension of projection space. We show how to adapt our projection
routine to hardware. Our projection method uses a sub-routine that involves
another Euclidean projection; onto the probability simplex. We therefore
explain how to adapt to hardware a well know simplex projection algorithm. The
hardware implementations of both projection algorithms achieve area scalings of
at a delay of
. Finally, we present numerical results in
which we evaluate the fixed-point accuracy and resource scaling of these
algorithms when targeting a modern FPGA
Pathological classification of equine recurrent laryngeal neuropathy
Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left‐sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal (“dying back”) axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder
Efficient learning of neighbor representations for boundary trees and forests
We introduce a semiparametric approach to neighbor-based classification. We
build off the recently proposed Boundary Trees algorithm by Mathy et al.(2015)
which enables fast neighbor-based classification, regression and retrieval in
large datasets. While boundary trees use an Euclidean measure of similarity,
the Differentiable Boundary Tree algorithm by Zoran et al.(2017) was introduced
to learn low-dimensional representations of complex input data, on which
semantic similarity can be calculated to train boundary trees. As is pointed
out by its authors, the differentiable boundary tree approach contains a few
limitations that prevents it from scaling to large datasets. In this paper, we
introduce Differentiable Boundary Sets, an algorithm that overcomes the
computational issues of the differentiable boundary tree scheme and also
improves its classification accuracy and data representability. Our algorithm
is efficiently implementable with existing tools and offers a significant
reduction in training time. We test and compare the algorithms on the well
known MNIST handwritten digits dataset and the newer Fashion-MNIST dataset by
Xiao et al.(2017).Comment: 9 pages, 2 figure
Decomposition Methods for Large Scale LP Decoding
When binary linear error-correcting codes are used over symmetric channels, a
relaxed version of the maximum likelihood decoding problem can be stated as a
linear program (LP). This LP decoder can be used to decode error-correcting
codes at bit-error-rates comparable to state-of-the-art belief propagation (BP)
decoders, but with significantly stronger theoretical guarantees. However, LP
decoding when implemented with standard LP solvers does not easily scale to the
block lengths of modern error correcting codes. In this paper we draw on
decomposition methods from optimization theory, specifically the Alternating
Directions Method of Multipliers (ADMM), to develop efficient distributed
algorithms for LP decoding.
The key enabling technical result is a "two-slice" characterization of the
geometry of the parity polytope, which is the convex hull of all codewords of a
single parity check code. This new characterization simplifies the
representation of points in the polytope. Using this simplification, we develop
an efficient algorithm for Euclidean norm projection onto the parity polytope.
This projection is required by ADMM and allows us to use LP decoding, with all
its theoretical guarantees, to decode large-scale error correcting codes
efficiently.
We present numerical results for LDPC codes of lengths more than 1000. The
waterfall region of LP decoding is seen to initiate at a slightly higher
signal-to-noise ratio than for sum-product BP, however an error floor is not
observed for LP decoding, which is not the case for BP. Our implementation of
LP decoding using ADMM executes as fast as our baseline sum-product BP decoder,
is fully parallelizable, and can be seen to implement a type of message-passing
with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the
49th Annual Allerton Conference, September 2011. This version to appear in
IEEE Transactions on Information Theor
The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents
We consider the secret key generation problem when sources are randomly
excited by the sender and there is a noiseless public discussion channel. Our
setting is thus similar to recent works on channels with action-dependent
states where the channel state may be influenced by some of the parties
involved. We derive single-letter expressions for the secret key capacity
through a type of source emulation analysis. We also derive lower bounds on the
achievable reliability and secrecy exponents, i.e., the exponential rates of
decay of the probability of decoding error and of the information leakage.
These exponents allow us to determine a set of strongly-achievable secret key
rates. For degraded eavesdroppers the maximum strongly-achievable rate equals
the secret key capacity; our exponents can also be specialized to previously
known results.
In deriving our strong achievability results we introduce a coding scheme
that combines wiretap coding (to excite the channel) and key extraction (to
distill keys from residual randomness). The secret key capacity is naturally
seen to be a combination of both source- and channel-type randomness. Through
examples we illustrate a fundamental interplay between the portion of the
secret key rate due to each type of randomness. We also illustrate inherent
tradeoffs between the achievable reliability and secrecy exponents. Our new
scheme also naturally accommodates rate limits on the public discussion. We
show that under rate constraints we are able to achieve larger rates than those
that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on
Information Theory; Revised in Oct 201
- …
