2,198 research outputs found

    Magnitude and crystalline anisotropy of hole magnetization in (Ga,Mn)As

    Full text link
    Theory of hole magnetization Mc in zinc-blende diluted ferromagnetic semiconductors is developed relaxing the spherical approximation of earlier approaches. The theory is employed to determine Mc for (Ga,Mn)As over a wide range of hole concentrations and a number of crystallographic orientations of Mn magnetization. It is found that anisotropy of Mc is practically negligible but the obtained magnitude of Mc is significantly greater than that determined in the spherical approximation. Its sign and value compares favorably with the results of available magnetization measurements and ferromagnetic resonance studies.Comment: 5 pages, 3 figure

    Magneto-electric coupling in zigzag graphene nanoribbons

    Full text link
    Zigzag graphene nanoribbons can have magnetic ground states with ferromagnetic, antiferromagnetic, or canted configurations, depending on carrier density. We show that an electric field directed across the ribbon alters the magnetic state, favoring antiferromagnetic configurations. This property can be used to prepare ribbons with a prescribed spin-orientation on a given edge.Comment: 4 pages, 5 figure

    Optical properties of metallic (III,Mn)V ferromagnetic semiconductors in the infrared to visible range

    Get PDF
    We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III,Mn)V semiconductors in the infrared to visible spectrum. Our analysis is based on the successful kinetic exchange model for (III,Mn)V ferromagnetic semiconductors. We perform the calculations within the Kubo formalism and treat the disorder effects pertubatively within the Born approximation, valid for the metallic regime. We consider an eight-band Kohn-Luttinger model (six valence bands plus two conduction bands) as well as a ten-band model with additional dispersionless bands simulating phenomenologically the upper-mid-gap states induced by antisite and interstitial impurities. These models qualitatively account for optical-absorption experiments and predict new features in the mid-infrared Kerr angle and magnetic-circular-dichroism properties as a function of Mn concentration and free carrier density.Comment: 10 pages, 7 figures, some typos correcte

    Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors

    Full text link
    It is demonstrated that the nearest neighbor Mn pair on the GaAs (001) surface has a lower energy for the [-110] direction comparing to the [110] case. According to the group theory and the Luttinger's method of invariants, this specific Mn distribution results in bulk uniaxial in-plane and out-of-plane anisotropies. The sign and magnitude of the corresponding anisotropy energies determined by a perturbation method and ab initio computations are consistent with experimental results.Comment: 5 pages, 1 figur

    Magnetic interactions of substitutional Mn pairs in GaAs

    Full text link
    We employ a kinetic-exchange tight-binding model to calculate the magnetic interaction and anisotropy energies of a pair of substitutional Mn atoms in GaAs as a function of their separation distance and direction. We find that the most energetically stable configuration is usually one in which the spins are ferromagnetically aligned along the vector connecting the Mn atoms. The ferromagnetic configuration is characterized by a splitting of the topmost unoccupied acceptor levels, which is visible in scanning tunneling microscope studies when the pair is close to the surface and is strongly dependent on pair orientation. The largest acceptor splittings occur when the Mn pair is oriented along the symmetry direction, and the smallest when they are oriented along . We show explicitly that the acceptor splitting is not simply related to the effective exchange interaction between the Mn local moments. The exchange interaction constant is instead more directly related to the width of the distribution of all impurity levels -- occupied and unoccupied. When the Mn pair is at the (110) GaAs surface, both acceptor splitting and effective exchange interaction are very small except for the smallest possible Mn separation.Comment: 25 figure

    Optoelectronic control of spin dynamics at near-THz frequencies in magnetically doped quantum wells

    Full text link
    We use time-resolved Kerr rotation to demonstrate the optical and electronic tuning of both the electronic and local moment (Mn) spin dynamics in electrically gated parabolic quantum wells derived from II-VI diluted magnetic semiconductors. By changing either the electrical bias or the laser energy, the electron spin precession frequency is varied from 0.1 to 0.8 THz at a magnetic field of 3 T and at a temperature of 5 K. The corresponding range of the electrically-tuned effective electron g-factor is an order of magnitude larger compared with similar nonmagnetic III-V parabolic quantum wells. Additionally, we demonstrate that such structures allow electrical modulation of local moment dynamics in the solid state, which is manifested as changes in the amplitude and lifetime of the Mn spin precession signal under electrical bias. The large variation of electron and Mn-ion spin dynamics is explained by changes in magnitude of the sp−d exchange overlap.Comment: 4 pages, 3 figure

    Cubic anisotropy in high homogeneity thin (Ga,Mn)As layers

    Full text link
    Historically, comprehensive studies of dilute ferromagnetic semiconductors, e.g., pp-type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative theoretical description of effects associated with spin-orbit interactions in solids, such as crystalline magnetic anisotropy. In particular, the theory was successful in explaining {\em uniaxial} magnetic anisotropies associated with biaxial strain and non-random formation of magnetic dimers in epitaxial (Ga,Mn)As layers. However, the situation appears much less settled in the case of the {\em cubic} term: the theory predicts switchings of the easy axis between in-plane ⟨100⟩\langle 100\rangle and ⟨110⟩\langle 110\rangle directions as a function of the hole concentration, whereas only the ⟨100⟩\langle 100\rangle orientation has been found experimentally. Here, we report on the observation of such switchings by magnetization and ferromagnetic resonance studies on a series of high-crystalline quality (Ga,Mn)As films. We describe our findings by the mean-field pp-dd Zener model augmented with three new ingredients. The first one is a scattering broadening of the hole density of states, which reduces significantly the amplitude of the alternating carrier-induced contribution. This opens the way for the two other ingredients, namely the so-far disregarded single-ion magnetic anisotropy and disorder-driven non-uniformities of the carrier density, both favoring the ⟨100⟩\langle 100\rangle direction of the apparent easy axis. However, according to our results, when the disorder gets reduced a switching to the ⟨110⟩\langle 110\rangle orientation is possible in a certain temperature and hole concentration range.Comment: 12 pages, 9 figure

    Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors

    Full text link
    The magnetic behavior of insulating doped diluted magnetic semiconductors (DMS) is characterized by the interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in contrast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors. To explain this behavior, a model has been developed in which polarons interact via both the standard direct carrier-carrier exchange interaction (due to virtual carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due to the interactions of polarons with magnetic ions in an interstitial region). Using a variational procedure, the optimal values of the model parameters were determined as a function of temperature. At temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromagnetic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This result supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure
    • …
    corecore