289 research outputs found

    Enhancing Student Learning Experiences and Providing Value to the Agribusiness Industry by Building the Industry-Institution Interface

    Get PDF
    This paper addresses agribusiness industry-institution interfaces, research-education linkages, and improving agribusiness education with opportunities such as agricultural students’ internships with agribusiness companies, conducting applied research, and finding opportunities for agribusiness educational seminars conducted by universities. The rationale for agribusiness internships is discussed, and agribusiness internship structure and planning is outlined. The potential benefits of a Departmental Advisory Board are listed, along with suggestions for implementing such a group. Applied agribusiness research opportunities including case studies and extension, outreach, or trade publications are highlighted, and examples of this type of work are discussed. Finally, continuing education opportunities for agribusiness conferences or symposiums hosted and organized by a university Department of Agribusiness are delineated.advisory board, agribusiness management, case studies, continuing education, internships, Agribusiness, Teaching/Communication/Extension/Profession,

    CONSUMER PERCEPTIONS OF TROUT AS A FOOD ITEM

    Get PDF
    The impacts of socioeconomic/demographic characteristics, experiences and preferences of consumers on trout purchasing decisions were estimated using Probit and Ordered Probit regression techniques. Data from a survey of consumer purchasing behavior and personal attributes were used to deduce factors that led to either a high or low likelihood of purchasing trout products. Analysis of data pertaining to whole trout and value-added products yielded consistently different characteristics of consumers who show a high affinity toward purchasing one or more of such products. Results from these analyses were used to suggest techniques for marketing whole trout and value-added trout products to specific segments of the consumer population.Food Consumption/Nutrition/Food Safety,

    Strategic Group Analysis of U.S. Food Businesses Using the Two-step Clustering Method

    Get PDF
    strategic group, planning, strategy, performance, Agribusiness, Institutional and Behavioral Economics, Marketing, Productivity Analysis, M0, M14, M2, M30,

    Geometric combinatorial algebras: cyclohedron and simplex

    Full text link
    In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer algebra of permutations and the Loday-Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra (one-sided) with basis all the faces of the simplices.Comment: 23 figures, new expanded section about Hopf algebra of simplices, with journal correction

    Factors Influencing Growth of Dairy Product Manufacturing in the United States

    Get PDF
    dairy product manufacturing, growth, United States, Farm Management, Livestock Production/Industries, Production Economics,

    A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6

    Full text link
    The invention of the "dual resonance model" N-point functions BN motivated the development of current string theory. The simplest of these models, the four-point function B4, is the classical Euler Beta function. Many standard methods of complex analysis in a single variable have been applied to elucidate the properties of the Euler Beta function, leading, for example, to analytic continuation formulas such as the contour-integral representation obtained by Pochhammer in 1890. Here we explore the geometry underlying the dual five-point function B5, the simplest generalization of the Euler Beta function. Analyzing the B5 integrand leads to a polyhedral structure for the five-crosscap surface, embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120 in PGL(6). We find a Pochhammer-like representation for B5 that is a contour integral along a surface of genus five. The symmetric embedding of the five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the surface of genus four in R6 that has a polyhedral structure with 24 pentagonal faces and a symmetry group of order 240 in O(6). The methods appear generalizable to all N, and the resulting structures seem to be related to associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure

    Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials

    Full text link
    The mean first passage time (MFPT) for photoexcitations diffusion in a funneling potential of artificial tree-like light-harvesting antennae (phenylacetylene dendrimers with generation-dependent segment lengths) is computed. Effects of the non-linearity of the realistic funneling potential and slow random solvent fluctuations considerably slow down the center-bound diffusion beyond a temperature-dependent optimal size. Diffusion on a disordered Cayley tree with a linear potential is investigated analytically. At low temperatures we predict a phase in which the MFPT is dominated by a few paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers

    Full text link
    The center-bound excitonic diffusion on dendrimers subjected to several types of non-homogeneous funneling potentials, is considered. We first study the mean-first passage time (MFPT) for diffusion in a linear potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling force, there is a transition from a phase in which the MFPT grows exponentially with the number of generations gg, to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated random forces there is, in addition, a transition as the temperature TT is lowered. This is a transition from a high-TT regime in which all paths contribute to the MFPT to a low-TT regime in which only a few of them do. We further explore the funneling within a realistic non-linear potential for extended dendrimers in which the dependence of the lowest excitonic energy level on the segment length was derived using the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT grows initially linearly with gg but crosses-over, beyond a molecular-specific and TT-dependent optimal size, to an exponential increase. Finally we consider geometrical disorder in the form of a small concentration of long connections as in the {\it small world} model. Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power-law or to a logarithmic scaling with gg, depending on the strength of the funneling force.Comment: 13 pages, 9 figure

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction
    corecore