146 research outputs found

    Autonomous Bee Colony Optimization for Multi-objective Function

    Get PDF
    An Autonomous Bee Colony Optimization (A-BCO) algorithm for solving multi-objective numerical problems is proposed. In contrast with previous Bee Colony algorithms, A-BCO utilizes a diversity-based performance metric to dynamically assess the archive set. This assessment is employed to adapt the bee colony structures and flying patterns. This self-adaptation feature is introduced to optimize the balance between exploration and exploitation during the search process. Moreover, the total number of search iterations is also determined/optimized by A-BCO, according to user pre-specified conditions, during the search process. We evaluate A-BCO upon numerical benchmark problems and the experimental results demonstrate the effectiveness and robustness of the proposed algorithm when compared with the Non-dominated Sorting Genetic Algorithm II and the latest Multi-objective Bee Colony Algorithm proposed to date

    Sclerosing lymphocytic lobulitis mimicking a tumor relapse in a young woman with a history of breast cancer

    Get PDF
    Sclerosing lymphocytic lobulitis or diabetic mastopathy is a benign entity with non-specific imaging features which can mimic breast carcinoma. It is a condition commonly associated with long standing diabetes and has also been linked with various auto-immune diseases. We present the case of a 27-year-old woman with a history of carcinoma of the left breast and otherwise unremarkable medical history, who developed sclerosing lymphocytic lobulitis in the right breast during follow-up

    The Emergence of Urban Land Use Patterns Driven by Dispersion and Aggregation Mechanisms

    Get PDF
    Abstract We employ a cellular-automata to reconstruct the land use patterns of cities that we characterize by two measures of spatial heterogeneity: (a) a variant of spatial entropy, which measures the spread of residential, business, and industrial activity sectors, and (b) an index of dissimilarity, which quantifies the degree of spatial mixing of these land use activity parcels. A minimalist and bottom-up approach is adopted that utilizes a limited set of three parameters which represent the forces which determine the extent to which each of these sectors spatially aggregate into clusters. The dispersion degrees of the land uses are governed by a fixed pre-specified power-law distribution based on empirical observations in other cities. Our method is then used to reconstruct land use patterns for the city state of Singapore and a selection of North American cities. We demonstrate the emergence of land use patterns that exhibit comparable visual features to the actual city maps defining our case studies whilst sharing similar spatial characteristics. Our work provides a complementary approach to other measures of urban spatial structure that differentiate cities by their land use patterns resulting from bottom-up dispersion and aggregation processes

    Time to negative throat culture following initiation of antibiotics for pharyngeal group A Streptococcus: a systematic review and meta-analysis up to October 2021 to inform public health control measures

    Get PDF
    Background: Public health guidance recommending isolation of individuals with group A streptococcal (GAS) infection or carriage for 12–24 h from antibiotic initiation to prevent onward transmission requires a strong evidence base. Aim: To estimate the pooled proportion of individuals who remain GAS culture-positive at set intervals after initiation of antibiotics through a systematic literature review (PROSPERO CRD42021290364) and meta-analysis. Methods: We searched Ovid MEDLINE (1946–), EMBASE (1974–) and Cochrane library. We included interventional or observational studies with ≥ 10 participants reporting rates of GAS throat culture positivity during antibiotic treatment for culture-confirmed GAS pharyngitis, scarlet fever and asymptomatic pharyngeal GAS carriage. We did not apply age, language or geographical restrictions. Results: Of 5,058 unique records, 43 were included (37 randomised controlled studies, three non-randomised controlled trials and three before-and-after studies). The proportion of individuals remaining culture-positive on day 1, day 2 and days 3–9 were 6.9% (95% CI: 2.7–16.8%), 5.4% (95% CI: 2.1–13.3%) and 2.6% (95% CI: 1.6–4.2%). For penicillins and cephalosporins, day 1 positivity was 6.5% (95% CI: 2.5–16.1%) and 1.6% (95% CI: 0.04–42.9%), respectively. Overall, for 9.1% (95% CI: 7.3–11.3), throat swabs collected after completion of therapy were GAS culture-positive. Only six studies had low risk of bias. Conclusions: Our review provides evidence that antibiotics for pharyngeal GAS achieve a high rate of culture conversion within 24 h but highlights the need for further research given methodological limitations of published studies and imprecision of pooled estimates. Further evidence is needed for non-beta-lactam antibiotics and asymptomatic individuals

    Early precipitated micropyrite in microbialites: A time capsule of microbial sulfur cycling

    Get PDF
    Microbialites are organosedimentary rocks that have occurred throughout the Earth’s history. The relationships between diverse microbial metabolic activities and isotopic signatures in biominerals forming within these microbialites are key to understanding modern biogeochemical cycles, but also for accurate interpretation of the geologic record. Here, we performed detailed mineralogical investigations coupled with NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) analyses of pyrite S isotopes in mineralising microbial mats from two different environments, a hypersaline lagoon (Cayo Coco, Cuba) and a volcanic alkaline crater lake (Atexcac, Mexico). Both microbialite samples contain two distinct pyrite morphologies: framboids and euhedral micropyrites, which display distinct ranges of δ34S values1. Considering the sulfate-sulfur isotopic compositions associated with both environments, micropyrites display a remarkably narrow range of Δpyr (i.e. Δpyr ≡ δ34SSO4 − δ34Spyr) between 56 and 62‰. These measured Δpyr values agree with sulfate-sulfide equilibrium fractionation, as observed in natural settings characterised by low microbial sulfate reduction respiration rates. Moreover, the distribution of S isotope compositions recorded in the studied micropyrites suggests that sulfide oxidation also occurred at the microbialite scale. These results highlight the potential of micropyrites to capture signatures of microbial sulfur cycling and show that S isotope composition in pyrites record primarily the local micro-environments induced by the microbialite

    H-Prune through GSK-3β interaction sustains canonical WNT/β-catenin signaling enhancing cancer progression in NSCLC.

    Get PDF
    H-Prune hydrolyzes short-chain polyphosphates (PPase activity) together with an hitherto cAMP-phosphodiesterase (PDE), the latest influencing different human cancers by its overexpression. H-Prune promotes cell migration in cooperation with glycogen synthase kinase-3 (Gsk-3β). Gsk-3β is a negative regulator of canonical WNT/β-catenin signaling. Here, we investigate the role of Gsk-3β/h-Prune complex in the regulation of WNT/β-catenin signaling, demonstrating the h-Prune capability to activate WNT signaling also in a paracrine manner, through Wnt3a secretion. In vivo study demonstrates that h-Prune silencing inhibits lung metastasis formation, increasing mouse survival. We assessed h-Prune levels in peripheral blood of lung cancer patients using ELISA assay, showing that h-Prune is an early diagnostic marker for lung cancer. Our study dissects out the mechanism of action of h-Prune in tumorigenic cells and also sheds light on the identification of a new therapeutic target in non-small-cell lung cancer

    Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings

    Get PDF
    We report a one-pot synthesis of spherical gold nanoparticles (52-22 nm) and their capping with cefaclor, a second-generation antibiotic, without use of other chemicals. The differently sized gold nanoparticles were fabricated by controlling the rate of reduction of gold ions in aqueous solution by varying the reaction temperature (20-70 C). The primary amine group of cefaclor acted as both the reducing and capping agent for the synthesis of gold nanoparticles leaving the b-lactam ring of cefaclor available for activity against microbes. Antimicrobial testing showed that cefaclor reduced gold nanoparticles have potent antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria as compared to cefaclor or gold nanoparticles alone. The minimum inhibition concentrations (MICs) of cefaclor reduced gold nanoparticles were 10m gmL1 and 100m gmL1 for S. aureus and E. coli respectively. The cefaclor reduced gold nanoparticles were further coated onto poly(ethyleneimine) (PEI) modified glass surfaces to obtain antimicrobial coatings suitable for biomedical applications and were tested against E. coli as an exemplar of activity. The antimicrobial coatings were very robust under adverse conditions (pH 3 and 10), inhibited the growth of E. coli on their surfaces, and could be used many times with retained activity. Results from a combined spectroscopic (FTIR) and microscopic study (AFM) suggest that the action of these novel particles is through the combined action of cefaclor inhibiting the synthesis of the peptidoglycan layer and gold nanoparticles generating "holes" in bacterial cell walls thereby increasing the permeability of the cell wall, resulting in the leakage of cell contents and eventually cell death

    The Origin of Phenotypic Heterogeneity in a Clonal Cell Population In Vitro

    Get PDF
    BACKGROUND: The spontaneous emergence of phenotypic heterogeneity in clonal populations of mammalian cells in vitro is a rule rather than an exception. We consider two simple, mutually non-exclusive models that explain the generation of diverse cell types in a homogeneous population. In the first model, the phenotypic switch is the consequence of extrinsic factors. Initially identical cells may become different because they encounter different local environments that induce adaptive responses. According to the second model, the phenotypic switch is intrinsic to the cells that may occur even in homogeneous environments. PRINCIPAL FINDINGS: We have investigated the “extrinsic” and the “intrinsic” mechanisms using computer simulations and experimentation. First, we simulated in silico the emergence of two cell types in a clonal cell population using a multiagent model. Both mechanisms produced stable phenotypic heterogeneity, but the distribution of the cell types was different. The “intrinsic” model predicted an even distribution of the rare phenotype cells, while in the “extrinsic” model these cells formed small clusters. The key predictions of the two models were confronted with the results obtained experimentally using a myogenic cell line. CONCLUSIONS: The observations emphasize the importance of the “ecological” context and suggest that, consistently with the “extrinsic” model, local stochastic interactions between phenotypically identical cells play a key role in the initiation of phenotypic switch. Nevertheless, the “intrinsic” model also shows some other aspects of reality: The phenotypic switch is not triggered exclusively by the local environmental variations, but also depends to some extent on the phenotypic intrinsic robustness of the cells

    Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to pseudomonas aeruginosa infection

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ
    corecore