32 research outputs found
Recommended from our members
Displacement Kerma Cross Sections for Neutron Interactions in Molybdenum
Modifications to the displacement kerma cross section methods employed in the NJOY99 nuclear data processing code are described. Calculations were performed with the modified code for molybdenum using ENDF-6 neutron interaction data. Results are presented for a range of plausible Ed values
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics
The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the time evolution of
the order parameter in systems undergoing first-order phase transformations has
been extended by Sekimoto to the level of two-point correlation functions.
Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas
model, in which the elementary kinetic processes act on microscopic length and
time scales. The theoretical framework is used to analyze data from extensive
Monte Carlo simulations. The theory is inherently a mesoscopic continuum
picture, and in principle it requires a large separation between the
microscopic scales and the mesoscopic scales characteristic of the evolving
two-phase structure. Nevertheless, we find excellent quantitative agreement
with the simulations in a large parameter regime, extending remarkably far
towards strong fields (large supersaturations) and correspondingly small
nucleation barriers. The original KJMA theory permits direct measurement of the
order parameter in the metastable phase, and using the extension to correlation
functions one can also perform separate measurements of the nucleation rate and
the average velocity of the convoluted interface between the metastable and
stable phase regions. The values obtained for all three quantities are verified
by other theoretical and computational methods. As these quantities are often
difficult to measure directly during a process of phase transformation, data
analysis using the extended KJMA theory may provide a useful experimental
alternative.Comment: RevTex, 21 pages including 14 ps figures. Submitted to Phys. Rev. B.
One misprint corrected in Eq.(C1
Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals
We briefly summarize the reported anomalous effects in deuterated metals at
ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on
important experiments as well as the theoretical basis for the opposition to
interpreting them as cold fusion. Then we critically examine more than 25
theoretical models for CF, including unusual nuclear and exotic chemical
hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
Growth of nanostructures by cluster deposition : a review
This paper presents a comprehensive analysis of simple models useful to
analyze the growth of nanostructures obtained by cluster deposition. After
detailing the potential interest of nanostructures, I extensively study the
first stages of growth (the submonolayer regime) by kinetic Monte-Carlo
simulations. These simulations are performed in a wide variety of experimental
situations : complete condensation, growth with reevaporation, nucleation on
defects, total or null cluster-cluster coalescence... The main scope of the
paper is to help experimentalists analyzing their data to deduce which of those
processes are important and to quantify them. A software including all these
simulation programs is available at no cost on request to the author. I
carefully discuss experiments of growth from cluster beams and show how the
mobility of the clusters on the surface can be measured : surprisingly high
values are found. An important issue for future technological applications of
cluster deposition is the relation between the size of the incident clusters
and the size of the islands obtained on the substrate. An approximate formula
which gives the ratio of the two sizes as a function of the melting temperature
of the material deposited is given. Finally, I study the atomic mechanisms
which can explain the diffusion of the clusters on a substrate and the result
of their mutual interaction (simple juxtaposition, partial or total
coalescence...)Comment: To be published Rev Mod Phys, Oct 99, RevTeX, 37 figure