1,828 research outputs found
X-ray Variability and Period Determinations in the Eclipsing Polar DP Leo
An analysis of ROSAT observations for the eclipsing magnetic cataclysmic
binary DP Leo provides constraints on the origin, size, temperature,
variability and structure of the soft X-ray emission region on the surface of
the white dwarf. These data, when combined with prior observations, show a
progression of approximately 2 degrees per year in the impact position of the
accretion stream onto the white dwarf. One explanation for the observed drift
in stream position is that a magnetic activity cycle on the secondary produces
orbital period oscillations. These oscillations result in an orbital period
which cycles above and below the rotational period of the nearly synchronous
white dwarf. The accretion stream and X-ray emission regions are modeled to fit
the observational data. A distance to the system is also calculated. [An
erroneous value for the cyclotron luminosity, included in an earlier paper
version of the preprint, is corrected here.]Comment: uuencoded PostScript file (25 pages) + 8 figures available by
anonymous ftp to ftp.astro.psu.edu (in the directory /pub/robinson), to
appear in ApJ, PSU preprint 1994-1
On the use of machine learning algorithms in the measurement of stellar magnetic fields
Regression methods based in Machine Learning Algorithms (MLA) have become an
important tool for data analysis in many different disciplines.
In this work, we use MLA in an astrophysical context; our goal is to measure
the mean longitudinal magnetic field in stars (H_ eff) from polarized spectra
of high resolution, through the inversion of the so-called multi-line profiles.
Using synthetic data, we tested the performance of our technique considering
different noise levels: In an ideal scenario of noise-free multi-line profiles,
the inversion results are excellent; however, the accuracy of the inversions
diminish considerably when noise is taken into account. In consequence, we
propose a data pre-process in order to reduce the noise impact, which consists
in a denoising profile process combined with an iterative inversion
methodology.
Applying this data pre-process, we have found a considerable improvement of
the inversions results, allowing to estimate the errors associated to the
measurements of stellar magnetic fields at different noise levels.
We have successfully applied our data analysis technique to two different
stars, attaining by first time the measurement of H_eff from multi-line
profiles beyond the condition of line autosimilarity assumed by other
techniques.Comment: Accepted for publication in A&
On 2-group global symmetries and their anomalies
In general quantum field theories (QFTs), ordinary (0-form) global symmetries and 1-form symmetries can combine into 2-group global symmetries. We describe this phenomenon in detail using the language of symmetry defects. We exhibit a simple procedure to determine the (possible) 2-group global symmetry of a given QFT, and provide a classification of the related \u2019t Hooft anomalies (for symmetries not acting on spacetime). We also describe how QFTs can be coupled to extrinsic backgrounds for symmetry groups that differ from the intrinsic symmetry acting faithfully on the theory. Finally, we provide a variety of examples, ranging from TQFTs (gapped systems) to gapless QFTs. Along the way, we stress that the \u201cobstruction to symmetry fractionalization\u201d discussed in some condensed matter literature is really an instance of 2-group global symmetry
On the creation of standards for interaction between real robots and virtual worlds
Research on virtual worlds and environments has increased tremendously in the last decade, giving birth to a variety of applications spanning over several areas such as virtual reality, human-computer interaction, psychology and sociology, among others. In this paper we elaborate on one issue affecting the areas of virtual worlds and robotics: the lack of standard mechanisms for communication and interaction between virtual worlds and robots. We contribute to the scientific community our thoughts on the possibility of creating a standard platform that enable the seamless interaction between these heterogeneous, distributed devices and systems. Hopefully, these ideas will turn, in the future, into applications that not only address the challenges in communication, control and interoperability of such systems (robots and virtual worlds), but also help to improve the standard of life of people through tangible products and services
Patterns of Fetal Heart Rate Response at ∼30 Weeks Gestation Predict Size at Birth
There is evidence that fetal exposure to maternal stress is associated with adverse birth outcomes. Less is known about the association between fetal responses to a stressor and indicators of fetal maturity and developmental outcomes. The purpose of the present study was to determine whether fetal heart rate (FHR) patterns in response to a startling stimulus at ∼30 weeks of gestation were associated with gestational age at birth and birth weight. FHR was measured in 156 maternal–fetal dyads following a vibroacoustic stimulus. All pregnancies were singleton intrauterine pregnancies in English-speaking women who were primarily married, middle class, White and at least 18 years of age. Group-based trajectory modeling identified five groups of fetuses displaying distinctive longitudinal trajectories of FHR response to the startling stimulus. The FHR group trajectories were significantly associated with birth weight percentile (P \u3c 0.01) even after controlling for estimated fetal weight at the time of assessment and parity, which are the known factors influencing birth weight (P \u3c 0.01). Post hoc analyses indicated that two groups accounted for the association between FHR patterns and birth weight. The group (n = 23) with the lowest birth weight exhibited an immediate FHR deceleration followed by an immediate acceleration that does not recover. An FHR pattern characterized by immediate and fast acceleration to the peak and a slow discovery to baseline was associated with the highest birth weight. This is the first direct evidence showing that low birth weight and the resulting neurological consequences may have their origins in early fetal development
- …