50 research outputs found

    THE MAXIMAL LENGTH OF A CHAIN IN THE BRUHAT ORDER FOR A CLASS OF BINARY MATRICES

    Get PDF
    Abstract: We answer to a question by Brualdi and Deaett about the maximal length of a chain in the Bruhat order for an interesting combinatorial class of binary matrices

    Protein-ligand binding with the coarse-grained Martini model

    Get PDF
    The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein–ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein–ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model

    Relative stability of the scleroglucan triple-helix and single strand: An insight from computational and experimental techniques

    Get PDF
    Scleroglucan (Sclg) is a polysaccharide that exhibits a triple helix conformation (triplex), both in aqueous solution and in the solid state, which is lost in DMSO solution, at high temperature and at high pH values. The triplex conformation is characterized by a high rigidity, responsible of Sclg peculiar properties. Although the relative stability of triplex and single strand has already been investigated, diferent structural details are still missing. In the present study, we analyse the structural properties and the factors stabilizing the single chain and the triple helix of Sclg in diferent conditions. To this end, we simulated both systems in water and in DMSO. The triple helix has been also simulated in the presence of chemical damages on one of the three strands (to reproduce in silico the efect of sonication) or by inducing a partial unfolding of the triplex structure. The computational results have been compared with experimental evidences in which the triplex denaturation, at alkaline pH values, has been followed by monitoring the UV and CD spectra of Congo red, used as a probe molecule. Our results indicate that sonication breaks the Sclg chains without appreciably changing the stability of the other tracts of triple helix. The simulated perturbed or partially unfolded triplexes show a clear tendency to form less ordered aggregates. Finally, our simulations put in evidence an important role of the hydrophobic interactions both in the triplex stability and in the aggregation processes observed after induced denaturation

    Aggregation propensity of therapeutic fibrin-homing pentapeptides: insights from experiments and molecular dynamics simulations

    Get PDF
    CREKA (Cys–Arg–Glu–Lys–Ala) and its engineered analogue CRMeEKA, in which Glu has been replaced by N-methyl-Glu to provide resistance against proteolysis, are emerging pentapeptides that were specifically designed to bind fibrin–fibronectin complexes accumulated in the walls of tumour vessels. However, many of the intrinsic properties of CREKA and CRMeEKA, which are probably responsible for their different behaviour when combined with other materials (such as polymers) for diagnosis and therapeutics, remain unknown yet. The intrinsic tendency of these pentapeptides to form aggregates has been analysed by combining experimental techniques and atomistic Molecular Dynamics (MD) simulations. Dynamic light scattering assays show the formation of nanoaggregates that increase in size with the peptide concentration, even though aggregation occurs sooner for CRMeEKA, independently of the peptide concentration. FTIR and circular dichroism spectroscopy studies suggest that aggregated pentapeptides do not adopt any secondary structure. Atomistic MD trajectories show that CREKA aggregates faster and forms bigger molecular clusters than CRMeEKA. This behaviour has been explained by stability of the conformations adopted by un-associated peptide strands. While CREKA molecules organize by forming intramolecular backbone – side chain hydrogen bonds, CRMeEKA peptides display main chain – main chain hydrogen bonds closing very stable ¿- or ß-turns. Besides, energetic analyses reveal that CRMeEKA strands are better solvated in water than CREKA ones, independent of whether they are assembled or un-associated.Peer ReviewedPostprint (author's final draft
    corecore