28,552 research outputs found
Measurable Concurrence of Mixed States
We show that bipartite concurrence for rank-2 mixed states of qubits is
written by an observable which can be exactly and directly measurable in
experiment by local projective measurements, provided that four copies of the
composite quantum system are available. In addition, for a tripartite quantum
pure state of qubits, the 3-tangle is also shown to be measurable only by
projective measurements on the reduced density matrices of a pair of qubits
conditioned on four copies of the state.Comment: 3 page
Seebeck Coefficients in Nanoscale Junctions: Effects of Electron-vibration Scattering and Local Heating
We report first-principles calculations of inelastic Seebeck coefficients in
an aluminum monatomic junction. We compare the elastic and inelastic Seebeck
coefficients with and without local heating. In the low temperature regime, the
signature of normal modes in the profiles of the inelastic Seebeck effects is
salient. The inelastic Seebeck effects are enhanced by the normal modes, and
further magnified by local heating. In the high temperature regime, the
inelastic Seebeck effects are weakly suppressed due to the quasi-ballistic
transport.Comment: 3 Figure
Modern CFD applications for the design of a reacting shear layer facility
The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data
Nonadiabatic Dynamics in Open Quantum-Classical Systems: Forward-Backward Trajectory Solution
A new approximate solution to the quantum-classical Liouville equation is
derived starting from the formal solution of this equation in forward-backward
form. The time evolution of a mixed quantum-classical system described by this
equation is obtained in a coherent state basis using the mapping
representation, which expresses quantum degrees of freedom in a
2N-dimensional phase space. The solution yields a simple non-Hamiltonian
dynamics in which a set of coherent state coordinates evolve in forward and
backward trajectories while the bath coordinates evolve under the influence of
the mean potential that depends on these forward and backward trajectories. It
is shown that the solution satisfies the differential form of the
quantum-classical Liouville equation exactly. Relations to other mixed
quantum-classical and semi-classical schemes are discussed.Comment: 28 pages, 1 figur
- …