15,818 research outputs found
Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925
We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR
J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is
consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded
light curve has a sinusoidal structure which is different from the
double-peaked gamma-ray pulse profile. We have also analysed the X-ray
phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is
thermal dominant. This suggests the X-ray pulsation mainly originates from the
modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
Gamma-ray emission from globular clusters
Over the last few years, the data obtained using the Large Area Telescope
(LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on
high-energy processes in globular clusters, particularly those involving
compact objects such as Millisecond Pulsars (MSPs). Gamma-ray emission in the
100 MeV to 10 GeV range has been detected from more than a dozen globular
clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of
known gamma-ray globular clusters, the empirical relations between gamma-ray
luminosity and properties of globular clusters such as their stellar encounter
rate, metallicity, and possible optical and infrared photon energy densities,
have been derived. The measured gamma-ray spectra are generally described by a
power law with a cut-off at a few gigaelectronvolts. Together with the
detection of pulsed gamma-rays from two MSPs in two different globular
clusters, such spectral signature lends support to the hypothesis that
gamma-rays from globular clusters represent collective curvature emission from
magnetospheres of MSPs in the clusters. Alternative models, involving
Inverse-Compton (IC) emission of relativistic electrons that are accelerated
close to MSPs or pulsar wind nebula shocks, have also been suggested.
Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov
telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle
some questions unanswered by current data.Comment: 11 pages, 7 figures, 2 tables, J. Astron. Space Sci., in pres
Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752
Globular clusters (GCs) are emerging as a new class of gamma-ray emitters,
thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now,
eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the
stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs
out of all known GCs that have not been studied in details before. In this
paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC
6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and
NGC 6541, in which gamma-rays were found within the GC tidal radius. With one
of the highest metallicity among all GCs in the Milky Way, the gamma-ray
luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs.
In addition, we confirm a previous report of significant gamma-ray emitting
region next to NGC 6441. We briefly discuss the observed offset of gamma-rays
from some GC cores. The increasing number of known gamma-ray GCs at distances
out to ~10 kpc is important for us to understand the gamma-ray emitting
mechanism and provides an alternative probe to the underlying millisecond
pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
- …