17 research outputs found

    BCG-induced Rabbit Alveolar Macrophages are Endowed with Strengthened Antioxidant Metabolic Pathways.

    No full text
    Following i.v. BCG infection, a new population of macrophages are recruited in the rabbit lung. These macrophages, known as activated macrophages, substitute the resident macrophages and can play a key role in the defence against mycobacteria. We report here that BCG-activated alveolar macrophages are equipped with a more active hexose monophosphate pathway, which can maintain an optimal intracellular concentration of NADPH and GSH, and allow to produce mycobactericidal free radicals and to become resistant to mycobacterium-induced programmed cell death. These findings suggest that sustaining the anti-oxidant properties of macrophages could represent a candidate process to be considered as a good therapeutic target in fighting Mycobacterium spp infections

    A procedure for the isolation of asbestos bodies from lung tissue by exploiting their magnetic properties: a new approach to asbestos body study.

    No full text
    The role of asbestos bodies (and associated proteinacious coating) in asbestos associated diseases is not well understood. Currently employed methods of isolation of these bodies employ harsh chemicals that lead to destruction of their proteinacious coating. In this work a method was developed that enabled the purification of whole, integral, unmodified asbestos bodies (AB) by exploiting their magnetic properties. Albumin and ferritin were found to be the major proteins associated with AB isolated from lung tissue of mesothelioma patients. Magnetically isolated AB were shown to be cytotoxic and to activate free radical production from inflammatory cells at a higher extent than that induced by bodies obtained by chemical digestion. The finding that hypochlorite-treated AB induce DNA damage, while AB obtained by the method described in this article failed to do so, together with the differential behavior of these bodies toward inflammatory cells, suggests that native asbestos bodies should be used to investigate the pathogenetic role of these structures

    VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways

    No full text
    Inflammatory responses by mast cells are characterized by massive exocytosis of prestored granular mediators followed by cytokine/chemokine release. The vesicular trafficking mechanisms involved remain poorly understood. Vesicular-associated membrane protein-8 (VAMP-8), a member of the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) family of fusion proteins initially characterized in endosomal and endosomal-lysosomal fusion, may also function in regulated exocytosis. Here we show that in bone marrow-derived mast cells (BMMCs) VAMP-8 partially colocalized with secretory granules and redistributed upon stimulation. This was associated with increased SNARE complex formation with the target t-SNAREs, SNAP-23 and syntaxin-4. VAMP-8-deficient BMMCs exhibited a markedly reduced degranulation response after IgE+ antigen-, thapsigargin-, or ionomycin-induced stimulation. VAMP-8-deficient mice also showed reduced plasma histamine levels in passive systemic anaphylaxis experiments, while cytokine/chemokine release was not affected. Unprocessed TNF accumulated at the plasma membrane where it colocalized with a VAMP-3-positive vesicular compartment but not with VAMP-8. The findings demonstrate that VAMP-8 segregates secretory lysosomal granule exocytosis in mast cells from cytokine/chemokine molecular trafficking pathways
    corecore