22 research outputs found

    Comparison of the clonogenic survival of A549 non-small cell lung adenocarcinoma cells after irradiation with low-dose-rate beta particles and high-dose-rate X-rays

    Get PDF
    Purpose: Lung cancer is the leading cause of cancer-related death. Among the new modalities to treat cancer, internal radiotherapy seems to be very promising. However, the achievable dose-rate is two orders of magnitude lower than the one used in conventional external radiotherapy, and data has to be collected to evaluate the cell response to highlight the potential effectiveness of low-dose-rate beta particles irradiation. This work investigates the phosphorus beta irradiation ( P) dose response on the clonogenicity of human A549 non-small cell lung adenocarcinoma cells and compares it to high-dose-rate X-irradiations results. Materials and methods: Cell survival was evaluated by a colony forming assay eight days after low-dose-rate P beta irradiations (0.8 Gy/h) and high-dose-rate X-ray irradiations (0.855 Gy/min). Results: Survival curves were obtained for both types of irradiations, and showed hyper-radiosensitivity at very low doses. Radiosensitivity parameters were obtained by using the linear-quadratic and induced-repair models. Conclusions: Comparison with high-dose-rate X-rays shows a similar surviving fraction, confirming the effectiveness of beta particles for tumor sterilization. © 2012 Informa UK, Ltd

    Comparison of the clonogenic survival of A549 non-small cell lung adenocarcinoma cells after irradiation with low-dose-rate beta particles and high-dose-rate X-rays

    No full text
    Purpose: Lung cancer is the leading cause of cancer-related death. Among the new modalities to treat cancer, internal radiotherapy seems to be very promising. However, the achievable dose-rate is two orders of magnitude lower than the one used in conventional external radiotherapy, and data has to be collected to evaluate the cell response to highlight the potential effectiveness of low-dose-rate beta particles irradiation. This work investigates the phosphorus beta irradiation ( P) dose response on the clonogenicity of human A549 non-small cell lung adenocarcinoma cells and compares it to high-dose-rate X-irradiations results. Materials and methods: Cell survival was evaluated by a colony forming assay eight days after low-dose-rate P beta irradiations (0.8 Gy/h) and high-dose-rate X-ray irradiations (0.855 Gy/min). Results: Survival curves were obtained for both types of irradiations, and showed hyper-radiosensitivity at very low doses. Radiosensitivity parameters were obtained by using the linear-quadratic and induced-repair models. Conclusions: Comparison with high-dose-rate X-rays shows a similar surviving fraction, confirming the effectiveness of beta particles for tumor sterilization. © 2012 Informa UK, Ltd

    Cryopreserved reticulocytes derived from hematopoietic stem cells can be invaded by cryopreserved Plasmodium vivax isolates

    Get PDF
    The development of a system for the continuous culture of Plasmodium vivax in vitro would benefit from the use of reticulocytes derived from differentiated hematopoietic stem cells (HCS). At present, the need to use both fresh reticulocytes and fresh P. vivax isolates represents a major obstacle towards this goal, particularly for laboratories located in non-endemic countries. Here, we describe a new method for the cryopreservation of HSC-derived reticulocytes to be used for both P. falciparum and P. vivax invasion tests. Cryopreserved P. falciparum and P. vivax isolates could invade both fresh and cryopreserved HSC-derived reticulocytes with similar efficiency. This new technique allows the storage of HSC-derived reticulocytes which can be used for later invasion tests and represents an important step towards the establishment of a continuous P. vivax culture

    Cryopreserved Plasmodium vivax and cord blood reticulocytes can be used for invasion and short term culture

    Get PDF
    The establishment of a Plasmodium vivaxin vitro culture system is critical for the development of new vaccine, drugs and diagnostic tests. Although short-term cultures have been successfully set up, their reproducibility in laboratories without direct access to P. vivax-infected patients has been limited by the need for fresh parasite isolates. We explored the possibility of using parasite isolates and reticulocytes, both cryopreserved, to perform invasion and initiate short-term culture. Invasion results obtained with both cryopreserved isolates and reticulocytes were similar to those obtained with fresh samples. This method should be easily replicated in laboratories outside endemic areas and will substantially contribute to the development of a continuous P. vivax culture. In addition, this model could be used for testing vaccine candidates as well as for studying invasion-specific molecular mechanisms

    Expression profiling of senescent-associated genes in human dermis from young and old donors. Proof-of-concept study.

    Full text link
    It is often described that it is difficult to really discriminate the cause of intrinsic skin aging. The aim of this study was to compare the profiles of expression of senescence-associated genes in biopsies of dermis from young and old human donors. TGF-beta1 was up-regulated in the dermis of old donors as well as the TGF-beta1-regulated genes. The anti-oxidant enzymes Selenium-dependent Glutathione peroxidase and Glutatione S-Transferase Theta 1 were also up-regulated in old dermis as well as Tumor Necrosis Factor Receptor Superfamily 1A. None of these genes had altered expression level in skin fibroblasts embedded in a collagen matrix and exposed to sublethal doses of UVB, suggesting their involvement in intrinsic aging. This study represents a proof-of-concept of larger whole transcriptome studies where all avenues should be used to subtract changes in gene expression due to extrinsic aging from changes potentially due to intrinsic aging

    A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax.

    No full text
    Currently, there are no reliable RBC invasion assays to guide the discovery of vaccines against Plasmodium vivax, the most prevalent malaria parasite in Asia and South America. Here we describe a protocol for an ex vivo P vivax invasion assay that can be easily deployed in laboratories located in endemic countries. The assay is based on mixing enriched cord blood reticulocytes with matured, trypsin-treated P vivax schizonts concentrated from clinical isolates. The reliability of this assay was demonstrated using a large panel of P vivax isolates freshly collected from patients in Thailand
    corecore