45 research outputs found

    Differential Scanning Fluorometry Signatures as Indicators of Enzyme Inhibitor Mode of Action: Case Study of Glutathione S-Transferase

    Get PDF
    Differential scanning fluorometry (DSF), also referred to as fluorescence thermal shift, is emerging as a convenient method to evaluate the stabilizing effect of small molecules on proteins of interest. However, its use in the mechanism of action studies has received far less attention. Herein, the ability of DSF to report on inhibitor mode of action was evaluated using glutathione S-transferase (GST) as a model enzyme that utilizes two distinct substrates and is known to be subject to a range of inhibition modes. Detailed investigation of the propensity of small molecule inhibitors to protect GST from thermal denaturation revealed that compounds with different inhibition modes displayed distinct thermal shift signatures when tested in the presence or absence of the enzyme's native co-substrate glutathione (GSH). Glutathione-competitive inhibitors produced dose-dependent thermal shift trendlines that converged at high compound concentrations. Inhibitors acting via the formation of glutathione conjugates induced a very pronounced stabilizing effect toward the protein only when GSH was present. Lastly, compounds known to act as noncompetitive inhibitors exhibited parallel concentration-dependent trends. Similar effects were observed with human GST isozymes A1-1 and M1-1. The results illustrate the potential of DSF as a tool to differentiate diverse classes of inhibitors based on simple analysis of co-substrate dependency of protein stabilization

    Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots

    Get PDF
    BACKGROUND: Salt tolerance in grapevine is associated with chloride (Cl-) exclusion from shoots; the rate-limiting step being the passage of Cl- between the root symplast and xylem apoplast. Despite an understanding of the physiological mechanism of Cl- exclusion in grapevine, the molecular identity of membrane proteins that control this process have remained elusive. To elucidate candidate genes likely to control Cl- exclusion, we compared the root transcriptomes of three Vitis spp. with contrasting shoot Cl- exclusion capacities using a custom microarray. RESULTS: When challenged with 50 mM Cl-, transcriptional changes of genotypes 140 Ruggeri (shoot Cl- excluding rootstock), K51-40 (shoot Cl- including rootstock) and Cabernet Sauvignon (intermediate shoot Cl- excluder) differed. The magnitude of salt-induced transcriptional changes in roots correlated with the amount of Cl- accumulated in shoots. Abiotic-stress responsive transcripts (e.g. heat shock proteins) were induced in 140 Ruggeri, respiratory transcripts were repressed in Cabernet Sauvignon, and the expression of hypersensitive response and ROS scavenging transcripts was altered in K51-40. Despite these differences, no obvious Cl- transporters were identified. However, under control conditions where differences in shoot Cl- exclusion between rootstocks were still significant, genes encoding putative ion channels SLAH3, ALMT1 and putative kinases SnRK2.6 and CPKs were differentially expressed between rootstocks, as were members of the NRT1 (NAXT1 and NRT1.4), and CLC families. CONCLUSIONS: These results suggest that transcriptional events contributing to the Cl- exclusion mechanism in grapevine are not stress-inducible, but constitutively different between contrasting varieties. We have identified individual genes from large families known to have members with roles in anion transport in other plants, as likely candidates for controlling anion homeostasis and Cl- exclusion in Vitis species. We propose these genes as priority candidates for functional characterisation to determine their role in chloride transport in grapevine and other plants.Sam W Henderson, Ute Baumann, Deidre H Blackmore, Amanda R Walker, Rob R Walker and Matthew Gilliha

    A new calcium binding glycoprotein family constitutes a major diatom cell wall component.

    Get PDF
    Diatoms possess silica-based cell walls with species-specific structures and ornamentations. Silica deposition in diatoms offers a model to study the processes involved in biomineralization. A new wall is produced in a specialized vesicle (silica deposition vesicle, SDV) and secreted. Thus proteins involved in wall biogenesis may remain associated with the mature cell wall. Here it is demonstrated that EDTA treatment removes most of the proteins present in mature cell walls of the marine diatom Cylindrotheca fusiformis. A main fraction consists of four related glycoproteins with a molecular mass of approximately 75 kDa. These glycoproteins were purified to homogeneity. They consist of repeats of Ca2+ binding domains separated by polypeptide stretches containing hydroxyproline. The proteins in the EDTA extract aggregate and precipitate in the presence of Ca2+. Immunological studies detected related proteins in the cell wall of the freshwater diatom Navicula pelliculosa, indicating that these proteins represent a new family of proteins that are involved in the biogenesis of diatom cell walls
    corecore