34 research outputs found

    Pump-probe scheme for electron-photon dynamics in hybrid conductor-cavity systems

    Full text link
    Recent experiments on nanoscale conductors coupled to microwave cavities put in prospect transport investigations of electron-photon interplay in the deep quantum regime. Here we propose a pump-probe scheme to investigate the transient dynamics of individual electron-photon excitations in a double quantum dot-cavity system. Excitations pumped into the system decay via charge tunneling at the double dot, probed in real time. We investigate theoretically the short-time charge transfer statistics at the dot, for periodic pumping, and show that this gives access to vacuum Rabi oscillations as well as excitation dynamics in the presence of double dot dephasing and relaxation.Comment: 5 Pages, 5 figure

    Microwave quantum optics and electron transport through a metallic dot strongly coupled to a transmission line cavity

    Full text link
    We investigate theoretically the properties of the photon state and the electronic transport in a system consisting of a metallic quantum dot strongly coupled to a superconducting microwave transmission line cavity. Within the framework of circuit quantum electrodynamics we derive a Hamiltonian for arbitrary strong capacitive coupling between the dot and the cavity. The dynamics of the system is described by a quantum master equation, accounting for the electronic transport as well as the coherent, non-equilibrium properties of the photon state. The photon state is investigated, focusing on, for a single active mode, signatures of microwave polaron formation and the effects of a non-equilibrium photon distribution. For two active photon modes, intra mode conversion and polaron coherences are investigated. For the electronic transport, electrical current and noise through the dot and the influence of the photon state on the transport properties are at the focus. We identify clear transport signatures due to the non-equilibrium photon population, in particular the emergence of superpoissonian shot-noise at ultrastrong dot-cavity couplings.Comment: 19 pages, 10 figure

    In vivo expression of neutrophil inhibitory factor via gene transfer prevents lipopolysaccharide-induced lung neutrophil infiltration and injury by a beta2 integrin-dependent mechanism.

    No full text
    The binding of beta2 (CD18) integrins on PMN cell membrane to intercellular adhesion molecule (ICAM) counter-receptors on the surface of vascular endothelial cells mediates PMN adhesion to endothelial cells. Neutrophil inhibitory factor (NIF), a 41-kD glycoprotein isolated from the canine hookworm (Ancylostoma caninum), is a beta2 integrin antagonist that inhibits PMN adhesion to endothelial cells. We transferred the NIF gene into CD1 mouse lungs by intravenous injection of cationic liposomes to study the effects of in vivo NIF expression on LPS-induced lung PMN sequestration and the development of lung injury. RT-PCR and Northern blot analysis indicated the lung-selective expression of the NIF transgene, and immunocytochemistry showed prominent NIF expression in pulmonary microvessel endothelial cells. NIF staining was also observed in intraluminal leukocytes present in pulmonary microvessels. This may be the result of NIF binding to leukocytes after its secretion from the transduced lung cells, since there was no evidence of NIF gene expression in circulating leukocytes. Pulmonary vascular NIF expression abrogated the lung tissue PMN uptake and airspace migration of PMN and prevented lung vascular injury (as measured by the lung tissue uptake of [125I]labeled albumin) after the intraperitoneal LPS challenge (200 microg/mouse). Expression of a control protein, chloramphenicol acetyltransferase (CAT), by the same strategy, had no effect on these responses. In vitro studies showed that NIF prevented mouse PMN adhesion consistent with the inhibition of lung uptake after LPS challenge in NIF transgene-expressing mice. We conclude that pulmonary vascular expression of NIF, a specific beta2 integrin- binding protein, is a potentially useful gene transfer strategy in modulating the infiltration of PMN across the alveolar-capillary epithelial barrier and in preventing lung vascular endothelial injury

    A diagrammatic description of the equations of motion, current and noise within the second-order von Neumann approach

    No full text
    We investigate the second-order von Neumann approach from a diagrammatic point of view and demonstrate its equivalence with the resonant tunneling approximation. The investigation of higher order diagrams shows that the method correctly reproduces the equation of motion for the single-particle reduced density matrix of an arbitrary non-interacting many-body system. This explains why the method reproduces the current exactly for such systems. We go on to show, however, that diagrams not included in the method are needed to calculate exactly higher cumulants of the charge transport. This thorough comparison sheds light on the validity of all these self-consistent second-order approaches. We analyze the discrepancy between the noise calculated by our method and the exact Levitov formula for a simple non-interacting quantum dot model. Furthermore, we study the noise of the canyon of current suppression in a two-level dot, a phenomenon that requires the inclusion of electron-electron interaction as well as higher order tunneling processes
    corecore