339 research outputs found
Examining the Dynamic Structure of Daily Internalizing and Externalizing Behavior at Multiple Levels of Analysis
Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days) of maladaptive behaviors collected from a sample (N = 101) of individuals diagnosed with personality disorders. Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days) we found support for a two-factor Internalizing-Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals) we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Impulsivity structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic
Examining the Dynamic Structure of Daily Internalizing and Externalizing Behavior at Multiple Levels of Analysis
Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days) of maladaptive behaviors collected from a sample (N = 101) of individuals diagnosed with personality disorders. Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days) we found support for a two-factor Internalizing-Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals) we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Impulsivity structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic
Using person‐specific neural networks to characterize heterogeneity in eating disorders: Illustrative links between emotional eating and ovarian hormones
ObjectiveEmotional eating has been linked to ovarian hormone functioning, but no studies to‐date have considered the role of brain function. This knowledge gap may stem from methodological challenges: Data are heterogeneous, violating assumptions of homogeneity made by between‐subjects analyses. The primary aim of this paper is to describe an innovative within‐subjects analysis that models heterogeneity and has potential for filling knowledge gaps in eating disorder research. We illustrate its utility in an application to pilot neuroimaging, hormone, and emotional eating data across the menstrual cycle.MethodGroup iterative multiple model estimation (GIMME) is a person‐specific network approach for estimating sample‐, subgroup‐, and individual‐level connections between brain regions. To illustrate its potential for eating disorder research, we apply it to pilot data from 10 female twins (N = 5 pairs) discordant for emotional eating and/or anxiety, who provided two resting state fMRI scans and hormone assays. We then demonstrate how the multimodal data can be linked in multilevel models.ResultsGIMME generated person‐specific neural networks that contained connections common across the sample, shared between co‐twins, and unique to individuals. Illustrative analyses revealed positive relations between hormones and default mode connectivity strength for control twins, but no relations for their co‐twins who engage in emotional eating or who had anxiety.DiscussionThis paper showcases the value of person‐specific neuroimaging network analysis and its multimodal associations in the study of heterogeneous biopsychosocial phenomena, such as eating behavior.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146371/1/eat22902.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146371/2/eat22902_am.pd
The Trans-Pacific Partnership Agreement: Looking Ahead to the Next Steps
Pressure has been building for the conclusion of the 12-country Trans-Pacific Partnership (TPP) negotiations. Getting the deal done is important, but the TPP is not just another free trade agreement (FTA). It represents the chance to set a trade agenda for the future across a wide range of topics for countries throughout the Asia-Pacific region. This means that the agreement should not be settled in haste. More importantly, it also means that key decisions need to be reached about broader issues related to the institutional structure of the TPP. These decisions must be made now, before the deal is closed, on issues such as how to create the TPP as a living agreement, the formation of a TPP Secretariat, and the clarification of entry conditions for future members such as the People’s Republic of China (PRC). These choices must be made deliberately and carefully even while officials are struggling with reaching closure on the most highly sensitive issues still remaining in the agreement. It will not be easy, but wise decisions are necessary now to ensure the long-term success of the TPP
Preventive Training Program Feedback Complexity, Movement Control, and Performance in Youth Athletes
Context: Preventive training programs (PTPs) reduce injury risk by improving movement control. Corrective feedback is important; however, many cues at once may be too complicated for athletes.
Objective: To compare movement control and long-jump (LJ) changes in youth athletes participating in a season-long PTP, with simplified feedback, traditional feedback, or a warmup of the coaches\u27 choosing.
Design: Cluster-randomized controlled trial.
Setting: Soccer fields.
Patients or Other Participants: A total of 420 athletes (simplified feedback = 173, traditional feedback = 118, and control = 129; age = 11 ± 3 years).
Intervention(s): Teams were randomized into the simplified PTP, traditional PTP, or control group. Simplified and traditional PTPs lasted 10 to 12 minutes and used the same exercises. The simplified PTP provided only sagittal-plane feedback (eg, “get low”), and the traditional PTP provided feedback targeting all motion planes (eg, “don\u27t let your knees cave inward”). Research assistants administered the PTP warmups 2 to 3 times/week for the season. Control team coaches chose and ran their own warmup strategies.
Main Outcome Measure(s): Participants completed 4 sessions (preseason [PRE], postseason [POST] at approximately 8 weeks after PRE, retention 1 [R1] at 6 weeks postseason, and retention 2 [R2] at 12 weeks postseason). They performed 3 trials of a jump-landing task, which was evaluated using the Landing Error Scoring System (LESS) and 2 recorded standing LJ trials at each test session. A time series panel was used to evaluate group differences across time points for the LESS and LJ.
Results: Change score analyses revealed improvements in the LESS score from PRE to POST for all groups. Improvements from PRE were retained at R1 and R2 for the intervention groups (simplified and traditional). The traditional group demonstrated better LJ performance at POST (P \u3c .001) and R1 (P = .049) than the simplified or control group.
Conclusions; Simplified cues were as effective as traditional cues in improving LESS scores from PRE to POST season. Participating in PTPs, regardless of their complexity, likely provides movement benefits
Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility
We present a systematic study of the effect of crack blunting on subsequent
crack propagation and dislocation emission. We show that the stress intensity
factor required to propagate the crack is increased as the crack is blunted by
up to thirteen atomic layers, but only by a relatively modest amount for a
crack with a sharp 60 corner. The effect of the blunting is far less
than would be expected from a smoothly blunted crack; the sharp corners
preserve the stress concentration, reducing the effect of the blunting.
However, for some material parameters blunting changes the preferred
deformation mode from brittle cleavage to dislocation emission. In such
materials, the absorption of preexisting dislocations by the crack tip can
cause the crack tip to be locally arrested, causing a significant increase in
the microscopic toughness of the crack tip. Continuum plasticity models have
shown that even a moderate increase in the microscopic toughness can lead to an
increase in the macroscopic fracture toughness of the material by several
orders of magnitude. We thus propose an atomic-scale mechanism at the crack
tip, that ultimately may lead to a high fracture toughness in some materials
where a sharp crack would seem to be able to propagate in a brittle manner.
Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final
version to appear in Phys. Rev. B. Main changes: Discussion slightly
shortened, one figure remove
Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships
The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues
- …