4,205 research outputs found

    Population III by Popular Demand - Progress and Previews

    Get PDF
    I discuss the ongoing search for stars of the Milky Way which have been referred to as members of Population III. Following a discussion of possible definitions for these stars, I consider the reasons why astronomers have undertaken this search, and list some of the numerous astrophysical uses of the extremely metal-poor stars found along the way. I then review survey techniques which have been used in the past, and provide an update on plans for future investigations. Finally, the question of when one might consider the search for Population III Finished is addressed.Comment: 12 pages, 0 figures, to appear in proceedings of THE FIRST STARS meeting, held in Garching, Germany, August 199

    The Chemo-Dynamical History of the Milky Way as Revealed by SDSS/SEGUE

    Full text link
    Although originally conceived as primarily an extragalactic survey, the Sloan Digital Sky Survey (SDSS-I), and its extensions SDSS-II and SDSS-III, continue to have a major impact on our understanding of the formation and evolution of our host galaxy, the Milky Way. The sub-survey SEGUE: Sloan Extension for Galactic Exploration and Understanding, executed as part of SDSS-II, obtained some 3500 square degrees of additional ugriz imaging, mostly at lower Galactic latitudes, in order to better sample the disk systems of the Galaxy. Most importantly, it obtained over 240,000 medium-resolution spectra for stars selected to sample Galactocentric distances from 0.5 to 100 kpc. In combination with stellar targets from SDSS-I, and the recently completed SEGUE-2 program, executed as part of SDSS-III, the total sample of SDSS spectroscopy for Galactic stars comprises some 500,000 objects. The development of the SEGUE Stellar Parameter Pipeline has enabled the determination of accurate atmospheric parameter estimates for a large fraction of these stars. Many of the stars in this data set within 5 kpc of the Sun have sufficiently well-measured proper motions to determine their full space motions, permitting examination of the nature of much more distant populations represented by members that are presently passing through the solar neighborhood. Ongoing analyses of these data are being used to draw a much clearer picture of the nature of our galaxy, and to supply targets for detailed high-resolution spectroscopic follow-up with the world's largest telescopes. Here we discuss a few highlights of recently completed and ongoing investigations with these data.Comment: 8 pages, 5 figures, to appear in IAU Symp. 26

    Searches for the Most Metal-Poor Candidates from SDSS and SEGUE

    Full text link
    We report on efforts to identify large samples of very and extremely metal-poor stars based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the Sloan Digital Sky Survey (SDSS), and its extension, SDSS-II, which includes the program SEGUE: Sloan Extension for Galactic Understanding and Exploration. To date, over 8000 stars with [Fe/H] <= -2.0 and effective temperatures in the range 4500K < T_eff < 7000K have been found, with the expected numbers in this temperature range to be well over 10,000 once SEGUE is completed. The numbers roughly double when one includes warmer blue stragglers and Blue Horizontal-Branch (BHB) stars in these counts. We show the observed low-metallicity tails of the Metallicity Distribution Functions for the cooler SDSS/SEGUE stars obtained thus far. We also comment on the confirmation of an inner/outer halo dichotomy in the Milky Way, and on how this realization may be used to direct searches for even more metal-poor stars in the near future.Comment: 5 pages, 4 figures, from the conference "First Stars III", held in July 200

    New Results From Bright Metal-Poor Stars In The Hamburg/Eso Survey

    Get PDF
    We present an abundance analysis of BE 1327-2326, currently the most iron-poor star known, based on a newly acquired VLT spectrum. The ID abundance pattern is corrected for 3D effects. The 3D iron abundance is [Fe/H] = -5.9, while the CNO elements of the star are extremely overabundant [CNO[Fe] similar to 3 to 4). The cosmologically important element Li is still not detected; the new upper limit is A (Li) < 0.6. A new analysis of the medium-resolution data of the sample of bright metal-poor stars from the Hamburg/ESO Survey (HES) was carried out. We are using this sample to obtain clues to the chemical nature of the early Universe by investigating the kinematic properties of the sample. Based on estimated [Fe/H] and [C/Fe], we are also able to use the sample to test a formation mechanism for low-mass metal-poor stars.Astronom

    Stellar haloes in Milky-Way mass galaxies: From the inner to the outer haloes

    Full text link
    We present a comprehensive study of the chemical properties of the stellar haloes of Milky-Way mass galaxies, analysing the transition between the inner to the outer haloes. We find the transition radius between the relative dominance of the inner-halo and outer-halo stellar populations to be ~15-20 kpc for most of our haloes, similar to that inferred for the Milky Way from recent observations. While the number density of stars in the simulated inner-halo populations decreases rapidly with distance, the outer-halo populations contribute about 20-40 per cent in the fiducial solar neighborhood, in particular at the lowest metallicities. We have determined [Fe/H] profiles for our simulated haloes; they exhibit flat or mild gradients, in the range [-0.002, -0.01 ] dex/kpc. The metallicity distribution functions exhibit different features, reflecting the different assembly history of the individual stellar haloes. We find that stellar haloes formed with larger contributions from massive subgalactic systems have steeper metallicity gradients. Very metal-poor stars are mainly contributed to the halo systems by lower-mass satellites. There is a clear trend among the predicted metallicity distribution functions that a higher fraction of low-metallicity stars are found with increasing radius. These properties are consistent with the range of behaviours observed for stellar haloes of nearby galaxies.Comment: 11 pages, 6 figures. Accepted MNRAS. Revised version after referee's comment
    corecore