134 research outputs found
Study of decagonal approximant and γ-brass-type compounds in Al-Cr-Fe thin films
This paper reports the preparation conditions and structure characteristics of Al-Cr-Fe very thin films (10-30 nm) obtained by the flash evaporation technique. The films are either amorphous or crystallized, depending on the thickness of the sample and temperature of the substrate. Annealing of amorphous films leads to crystallization of intermetallic phases that are all linked with quasicrystals. In particular, we have identified by transmission electron microscopy the following structures: body-centered-cubic (bcc) γ-brass phase, monoclinic λ-Al13(Cr,Fe)4 phase, and orthorhombic O1-phase, all of them already observed in this system, together with four new structures, i.e., a face-centered-cubic (fcc) γ-brass phase (superstructure of the bcc phase), monoclinic λ′-phase (related to the λ-phase) and two orthorhombic phases (1/1/; 1/1) and (1/0; 2/1) approximants of the decagonal phase). In this study, we point out the occurrence of twin defects of the λ-Al13(Cr,Fe)4 phase. Films prepared directly in the crystalline state comprise the O1 approximant. Electron energy loss spectroscopy measurements show that all films are not oxidized except for the presence of a native oxide layer that forms in ambient atmosphere with a thickness that cannot exceed 0.3 nm. Optical properties were investigated and show that films need to be large enough (>30 nm) to reproduce the properties of bulk alloys. Finally, contact angle wetting measurements reveal that the presence of such films on a substrate, even at very low thickness, considerably decreases the wetting behavior by wate
Outcome of treatment of pulmonary tuberculosis in Switzerland in 1996.
Adequate treatment of pulmonary tuberculosis cures patients and reduces transmission. The study assesses treatment outcomes under current conditions in Switzerland.
Retrospective cohort study including all TB cases with positive sputum cultures notified to the national surveillance system between July 1996 and June 1997. Ten months after notification, treating physicians reported the outcomes using WHO categories.
Of 265 patients, 209 (79%) completed at least 6 months' treatment, 3 (1%) were treatment failures, 23 (9%) died, 8 (3%) defaulted from treatment and 22 (8%) left the country. The proportion of successful treatments did not significantly differ between the 103 Swiss-born (80%) and the 162 foreign-born (78%) patients. There were 19 deaths (18%) in the Swiss-born and 4 (2%) in the foreign-born groups; death was caused by TB in two patients, 10 died of other causes (cause unknown in 11). In the foreign-born group there were 31 (19%) potentially unsatisfactory outcomes (treatment failure, default from treatment, transfer abroad) and in the Swiss-born group 2 (2%). Default from treatment involved 8 patients, 6 of whom were asylum seekers. In a multivariate analysis potentially unsatisfactory outcomes were not significantly associated with foreign origin but with status as a foreigner of irregular or unknown legal status (adj. OR 8.8; 95% CI 1.4 to 53.7).
Overall treatment success rates are satisfactory and similar to those of other western European countries. Potentially unsatisfactory outcomes are more common in foreign-born persons of irregular legal status. Tracking of non-adherent patients by health workers could further improve outcomes
Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer
We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn
quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral
Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by
x-ray photoelectron diffraction, low-energy electron diffraction and electron
backscatter diffraction. This overlayer is also characterized by a reduced
density of states near the Fermi edge as expected for quasicrystals. This is
the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn
is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001
Magnetization of carbon-coated ferromagnetic nanoclusters determined by electron holography
The magnetic properties of carbon-coated Co and Ni nanoparticles aligned in chains were determined using transmission electron holography. The measurements of the phase change of the electron wave due to the magnetization of the sample were performed. The ratio of remnant magnetization to bulk saturation magnetization Mr/Ms of Co decreased from 53% to 16% and of Ni decreased from 70% to 30% as the particle diameter increased from 25 to 90 nm. It was evident that the inhomogenous magnetic configurations could diminish the stray field of the particles. After being exposed to a 2-Tesla external magnetic field, the Mr/Ms of Co increased by 45% from the original values with the same dependency on the particle size. The Mr/Ms of Ni particles, on the other hand, increased only 10%. The increased magnetization could be attributed to the merging of small domains into larger ones after the exposure to the external magnetic field. The validity of the interpretation of the holograms was established by simulatio
Symmetry-dependent Mn-magnetism in Al69.8Pd12.1Mn18.1
Abstract.: We investigated the stability of magnetic moments in Al69.8Pd12.1Mn18.1. This alloy exists in both, the icosahedral (i) and the decagonal (d) quasicrystalline form. The transition from the i- to the d-phase is achieved by a simple heat treatment. We present the results of measurements of the 27Al NMR-response, the dc magnetic susceptibility, and the low-temperature specific heat of both phases. In the icosahedral compound, the majority of the Mn ions carries a magnetic moment. Their number is reduced by approximately a factor of two by transforming the alloy to its decagonal variety. For both compounds, we have indications for two different local environments of the Al nuclei. The first reflects a low density of states of conduction electrons and a weak coupling of the Al nuclei to the Mn-moments. The second type of environment implies a large d-electron density of states at the Fermi level and a strong coupling to the magnetic Mn moments. Spin-glass freezing transitions are observed at Tdecaf=12K for the decagonal, and Ticof=19 K for the icosahedral phas
Quasicrystalline nature of quasicrystal surfaces: A photoemission study
Differently prepared surfaces of quasicrystalline i-Al-Pd-Mn are analyzed using angle-resolved photoemission in the x-ray andultraviolet range of photon energies. Depending on the preparation, we find both surfaces with crystalline structure and metallic character, and surfaces with quasicrystalline structural fingerprints and a suppressed density of states at the Fermi level, compatible with a pseudogap
A maximum density rule for surfaces of quasicrystals
A rule due to Bravais of wide validity for crystals is that their surfaces
correspond to the densest planes of atoms in the bulk of the material.
Comparing a theoretical model of i-AlPdMn with experimental results, we find
that this correspondence breaks down and that surfaces parallel to the densest
planes in the bulk are not the most stable, i.e. they are not so-called bulk
terminations. The correspondence can be restored by recognizing that there is a
contribution to the surface not just from one geometrical plane but from a
layer of stacked atoms, possibly containing more than one plane. We find that
not only does the stability of high-symmetry surfaces match the density of the
corresponding layer-like bulk terminations but the exact spacings between
surface terraces and their degree of pittedness may be determined by a simple
analysis of the density of layers predicted by the bulk geometric model.Comment: 8 pages of ps-file, 3 Figs (jpg
A quasi-unit cell model for Al-Ni-Co Ideal Quasicrystal based on clusters with broken 10-fold symmetry
We present new evidence supporting the quasi-unit cell description of the
decagonal quasicrystal which shows that the solid is
composed of repeating, overlapping decagonal cluster columns with broken
10-fold symmetry. We propose an atomic model which gives a significantly
improved fit to electron microscopy experiments compared to a previous proposal
by us and to alternative proposals with 10-fold symmetric clusters.Comment: 4 pages, 4 eps figures, use epsfig.sty and revtex revised text and
figure
Prefrontal cortex activation and young driver behaviour: a fNIRS study
Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population
- …