812 research outputs found

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Localization in an Inhomogeneous Quantum Wire

    Get PDF
    We study interaction-induced localization of electrons in an inhomogeneous quasi-one-dimensional system--a wire with two regions, one at low density and the other high. Quantum Monte Carlo techniques are used to treat the strong Coulomb interactions in the low density region, where localization of electrons occurs. The nature of the transition from high to low density depends on the density gradient--if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. Ferromagnetic spin polarization does not appear for any parameters studied. The picture emerging here is in good agreement with measurements of tunneling between two wires.Comment: 4 pages; 2 new figures, substantial revisions and clarification

    Incipient Wigner Localization in Circular Quantum Dots

    Full text link
    We study the development of electron-electron correlations in circular quantum dots as the density is decreased. We consider a wide range of both electron number, N<=20, and electron gas parameter, r_s<18, using the diffusion quantum Monte Carlo technique. Features associated with correlation appear to develop very differently in quantum dots than in bulk. The main reason is that translational symmetry is necessarily broken in a dot, leading to density modulation and inhomogeneity. Electron-electron interactions act to enhance this modulation ultimately leading to localization. This process appears to be completely smooth and occurs over a wide range of density. Thus there is a broad regime of ``incipient'' Wigner crystallization in these quantum dots. Our specific conclusions are: (i) The density develops sharp rings while the pair density shows both radial and angular inhomogeneity. (ii) The spin of the ground state is consistent with Hund's (first) rule throughout our entire range of r_s for all 4<N<20. (iii) The addition energy curve first becomes smoother as interactions strengthen -- the mesoscopic fluctuations are damped by correlation -- and then starts to show features characteristic of the classical addition energy. (iv) Localization effects are stronger for a smaller number of electrons. (v) Finally, the gap to certain spin excitations becomes small at the strong interaction (large r_s) side of our regime.Comment: 14 pages, 12 figure

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb

    Contact Atomic Structure and Electron Transport Through Molecules

    Full text link
    Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a LUMO-like resonance peak near the Fermi energy. In the non-equilibrium properties, the resonance peak manifests itself in a large negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.Comment: 8 pages, 6 figure

    Interaction-Induced Strong Localization in Quantum Dots

    Full text link
    We argue that Coulomb blockade phenomena are a useful probe of the cross-over to strong correlation in quantum dots. Through calculations at low density using variational and diffusion quantum Monte Carlo (up to r_s ~ 55), we find that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over (which occurs near r_s ~ 20 for spin-polarized electrons) is, then, a signature of interaction-driven localization. As the addition energy is directly measurable in Coulomb blockade conductance experiments, this provides a direct probe of localization in the low density electron gas.Comment: 4 pages, published version, revised discussio

    On the Inequivalence of Weak-Localization and Coherent Backscattering

    Full text link
    We define a current-conserving approximation for the local conductivity tensor of a disordered system which includes the effects of weak localization. Using this approximation we show that the weak localization effect in conductance is not obtained simply from the diagram corresponding to the coherent back-scattering peak observed in optical experiments. Other diagrams contribute to the effect at the same order and decrease its value. These diagrams appear to have no semiclassical analogues, a fact which may have implications for the semiclassical theory of chaotic systems. The effects of discrete symmetries on weak localization in disordered conductors is evaluated and and compared to results from chaotic scatterers.Comment: 24 pages revtex + 12 figures on request; hub.94.

    Reflection Symmetric Ballistic Microstructures: Quantum Transport Properties

    Full text link
    We show that reflection symmetry has a strong influence on quantum transport properties. Using a random S-matrix theory approach, we derive the weak-localization correction, the magnitude of the conductance fluctuations, and the distribution of the conductance for three classes of reflection symmetry relevant for experimental ballistic microstructures. The S-matrix ensembles used fall within the general classification scheme introduced by Dyson, but because the conductance couples blocks of the S-matrix of different parity, the resulting conductance properties are highly non-trivial.Comment: 4 pages, includes 3 postscript figs, uses revte

    Interaction Effects in the Mesoscopic Regime: A Quantum Monte Carlo Study of Irregular Quantum Dots

    Full text link
    We address the issue of accurately treating interaction effects in the mesoscopic regime by investigating the ground state properties of isolated irregular quantum dots. Quantum Monte Carlo techniques are used to calculate the distributions of ground state spin and addition energy. We find a reduced probability of high spin and a somewhat larger even/odd alternation in the addition energy from quantum Monte Carlo than in local spin density functional theory. In both approaches, the even/odd effect gets smaller with increasing number of electrons, contrary to the theoretical understanding of large dots. We argue that the local spin density approximation over predicts the effects of interactions in quantum dots.Comment: Final Version, to appear in PRB as a Rapid Com
    corecore