812 research outputs found
Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape
We report experimental evidence that chaotic and non-chaotic scattering
through ballistic cavities display distinct signatures in quantum transport. In
the case of non-chaotic cavities, we observe a linear decrease in the average
resistance with magnetic field which contrasts markedly with a Lorentzian
behavior for a chaotic cavity. This difference in line-shape of the
weak-localization peak is related to the differing distribution of areas
enclosed by electron trajectories. In addition, periodic oscillations are
observed which are probably associated with the Aharonov-Bohm effect through a
periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.
Localization in an Inhomogeneous Quantum Wire
We study interaction-induced localization of electrons in an inhomogeneous
quasi-one-dimensional system--a wire with two regions, one at low density and
the other high. Quantum Monte Carlo techniques are used to treat the strong
Coulomb interactions in the low density region, where localization of electrons
occurs. The nature of the transition from high to low density depends on the
density gradient--if it is steep, a barrier develops between the two regions,
causing Coulomb blockade effects. Ferromagnetic spin polarization does not
appear for any parameters studied. The picture emerging here is in good
agreement with measurements of tunneling between two wires.Comment: 4 pages; 2 new figures, substantial revisions and clarification
Incipient Wigner Localization in Circular Quantum Dots
We study the development of electron-electron correlations in circular
quantum dots as the density is decreased. We consider a wide range of both
electron number, N<=20, and electron gas parameter, r_s<18, using the diffusion
quantum Monte Carlo technique. Features associated with correlation appear to
develop very differently in quantum dots than in bulk. The main reason is that
translational symmetry is necessarily broken in a dot, leading to density
modulation and inhomogeneity. Electron-electron interactions act to enhance
this modulation ultimately leading to localization. This process appears to be
completely smooth and occurs over a wide range of density. Thus there is a
broad regime of ``incipient'' Wigner crystallization in these quantum dots. Our
specific conclusions are: (i) The density develops sharp rings while the pair
density shows both radial and angular inhomogeneity. (ii) The spin of the
ground state is consistent with Hund's (first) rule throughout our entire range
of r_s for all 4<N<20. (iii) The addition energy curve first becomes smoother
as interactions strengthen -- the mesoscopic fluctuations are damped by
correlation -- and then starts to show features characteristic of the classical
addition energy. (iv) Localization effects are stronger for a smaller number of
electrons. (v) Finally, the gap to certain spin excitations becomes small at
the strong interaction (large r_s) side of our regime.Comment: 14 pages, 12 figure
Signatures of Classical Periodic Orbits on a Smooth Quantum System
Gutzwiller's trace formula and Bogomolny's formula are applied to a
non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic
oscillator. These semiclassical theories reproduce well the exact quantal
results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb
Contact Atomic Structure and Electron Transport Through Molecules
Using benzene sandwiched between two Au leads as a model system, we
investigate from first principles the change in molecular conductance caused by
different atomic structures around the metal-molecule contact. Our motivation
is the variable situations that may arise in break junction experiments; our
approach is a combined density functional theory and Green function technique.
We focus on effects caused by (1) the presence of an additional Au atom at the
contact and (2) possible changes in the molecule-lead separation. The effects
of contact atomic relaxation and two different lead orientations are fully
considered. We find that the presence of an additional Au atom at each of the
two contacts will increase the equilibrium conductance by up to two orders of
magnitude regardless of either the lead orientation or different group-VI
anchoring atoms. This is due to a LUMO-like resonance peak near the Fermi
energy. In the non-equilibrium properties, the resonance peak manifests itself
in a large negative differential conductance. We find that the dependence of
the equilibrium conductance on the molecule-lead separation can be quite
subtle: either very weak or very strong depending on the separation regime.Comment: 8 pages, 6 figure
Interaction-Induced Strong Localization in Quantum Dots
We argue that Coulomb blockade phenomena are a useful probe of the cross-over
to strong correlation in quantum dots. Through calculations at low density
using variational and diffusion quantum Monte Carlo (up to r_s ~ 55), we find
that the addition energy shows a clear progression from features associated
with shell structure to those caused by commensurability of a Wigner crystal.
This cross-over (which occurs near r_s ~ 20 for spin-polarized electrons) is,
then, a signature of interaction-driven localization. As the addition energy is
directly measurable in Coulomb blockade conductance experiments, this provides
a direct probe of localization in the low density electron gas.Comment: 4 pages, published version, revised discussio
On the Inequivalence of Weak-Localization and Coherent Backscattering
We define a current-conserving approximation for the local conductivity
tensor of a disordered system which includes the effects of weak localization.
Using this approximation we show that the weak localization effect in
conductance is not obtained simply from the diagram corresponding to the
coherent back-scattering peak observed in optical experiments. Other diagrams
contribute to the effect at the same order and decrease its value. These
diagrams appear to have no semiclassical analogues, a fact which may have
implications for the semiclassical theory of chaotic systems. The effects of
discrete symmetries on weak localization in disordered conductors is evaluated
and and compared to results from chaotic scatterers.Comment: 24 pages revtex + 12 figures on request; hub.94.
Reflection Symmetric Ballistic Microstructures: Quantum Transport Properties
We show that reflection symmetry has a strong influence on quantum transport
properties. Using a random S-matrix theory approach, we derive the
weak-localization correction, the magnitude of the conductance fluctuations,
and the distribution of the conductance for three classes of reflection
symmetry relevant for experimental ballistic microstructures. The S-matrix
ensembles used fall within the general classification scheme introduced by
Dyson, but because the conductance couples blocks of the S-matrix of different
parity, the resulting conductance properties are highly non-trivial.Comment: 4 pages, includes 3 postscript figs, uses revte
Interaction Effects in the Mesoscopic Regime: A Quantum Monte Carlo Study of Irregular Quantum Dots
We address the issue of accurately treating interaction effects in the
mesoscopic regime by investigating the ground state properties of isolated
irregular quantum dots. Quantum Monte Carlo techniques are used to calculate
the distributions of ground state spin and addition energy. We find a reduced
probability of high spin and a somewhat larger even/odd alternation in the
addition energy from quantum Monte Carlo than in local spin density functional
theory. In both approaches, the even/odd effect gets smaller with increasing
number of electrons, contrary to the theoretical understanding of large dots.
We argue that the local spin density approximation over predicts the effects of
interactions in quantum dots.Comment: Final Version, to appear in PRB as a Rapid Com
- …