159 research outputs found

    Giant spin-dependent photo-conductivity in GaAsN dilute nitride semiconductor

    Full text link
    A theoretical and experimental study of the spin-dependent photoconductivity in dilute Nitride GaAsN is presented. The non linear transport model we develop here is based on the rate equations for electrons, holes, deep paramagnetic and non paramagnetic centers both under CW and pulsed optical excitation. Emphasis is given to the effect of the competition between paramagnetic centers and non paramagnetic centers which allows us to reproduce the measured characteristics of the spin-dependent recombination power dependence. Particular attention is paid to the role of an external magnetic field in Voigt geometry. The photoconductivity exhibits a Hanle-type curve whereas the spin polarization of electrons shows two superimposed Lorentzian curves with different widths, respectively related to the recombination of free and trapped electrons. The model is capable of reproducing qualitatively and quantitatively the most important features of photoluminescence and photocurrent experiments and is helpful in providing insight on the various mechanisms involved in the electron spin polarization and filtering in GaAsN semiconductors.Comment: 10 pages, 5 figure

    Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors

    Full text link
    By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.Comment: 4 pages, 3 figure

    Exciton states in monolayer MoSe2: impact on interband transitions

    Full text link
    We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the K−ΓK-\Gamma direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.Comment: 8 pages, 3 figure

    Interlayer exciton mediated second harmonic generation in bilayer MoS2

    Full text link
    Second harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also inter-layer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations.Comment: main paper and supplemen

    Full Electrical Control of the Electron Spin Relaxation in GaAs Quantum Wells

    Full text link
    The electron spin dynamics in (111)-oriented GaAs/AlGaAs quantum wells is studied by timeresolved photoluminescence spectroscopy. By applying an external field of 50 kV/cm a two-order of magnitude increase of the spin relaxation time can be observed reaching values larger than 30 ns; this is a consequence of the electric field tuning of the spin-orbit conduction band splitting which can almost vanish when the Rashba term compensates exactly the Dresselhaus one. The measurements under transverse magnetic field demonstrate that the electron spin relaxation time for the three space directions can be tuned simultaneously with the applied electric field.Comment: 5 pages, 2 figure
    • 

    corecore