595 research outputs found

    The True Incidence of Magnetism among Field White Dwarfs

    Get PDF
    We study the incidence of magnetism in white dwarfs from three large and well-observed samples of hot, cool, and nearby white dwarfs in order to test whether the fraction of magnetic degenerates is biased, and whether it varies with effective temperature, cooling age, or distance. The magnetic fraction is considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the generally-hotter white dwarfs of the Palomar Green Survey. We show that the mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more, so there may be a strong bias against their selection in the magnitude-limited Palomar Green Survey. We argue that this bias is not as important in the samples of cool and nearby white dwarfs. However, this bias may not account for all of the difference in the magnetic fractions of these samples. It is not clear that the magnetic white dwarfs in the cool and local samples are drawn from the same population as the hotter PG stars. In particular, two or threee of the cool sample are low-mass white dwarfs in unresolved binary systems. Moreover, there is a suggestion from the local sample that the fractional incidence may increase with decreasing temperature, luminosity, and/or cooling age. Overall, the true incidence of magnetism at the level of 2 megagauss or greater is at least 10%, and could be higher. Limited studies capable of detecting lower field strengths down to 10 kilogauss suggest by implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu

    On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars

    Full text link
    We present a detailed analysis of a large spectroscopic and photometric sample of DZ white dwarfs based on our latest model atmosphere calculations. We revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs discovered in the Sloan Digital Sky Survey. The inclusion of metals and hydrogen in our model atmosphere calculations leads to different atmospheric parameters than those derived from pure helium models. Calcium abundances are found in the range from log (Ca/He) = -12 to -8. We also find that fits of the coolest objects show peculiarities, suggesting that our physical models may not correctly describe the conditions of high atmospheric pressure encountered in the coolest DZ stars. We find that the mean mass of the 11 DZ stars with trigonometric parallaxes, = 0.63 Mo, is significantly lower than that obtained from pure helium models, = 0.78 Mo, and in much better agreement with the mean mass of other types of white dwarfs. We determine hydrogen abundances for 27% of the DZ stars in our sample, while only upper limits are obtained for objects with low signal-to-noise ratio spectroscopic data. We confirm with a high level of confidence that the accretion rate of hydrogen is at least two orders of magnitude smaller than that of metals (and up to five in some cases) to be compatible with the observations. We find a correlation between the hydrogen abundance and the effective temperature, suggesting for the first time empirical evidence of a lower temperature boundary for the hydrogen screening mechanism. Finally, we speculate on the possibility that the DZA white dwarfs could be the result of the convective mixing of thin hydrogen-rich atmospheres with the underlying helium convection zone.Comment: 67 pages, 32 figures, accepted for publication in Ap

    Probing Dark Matter

    Get PDF
    Recent novel observations have probed the baryonic fraction of the galactic dark matter that has eluded astronomers for decades. Late in 1993, the MACHO and EROS collaborations announced in this journal the detection of transient and achromatic brightenings of a handful of stars in the Large Magellanic Cloud that are best interpreted as gravitational microlensing by low-mass foreground objects (MACHOS). This tantalized astronomers, for it implied that the population of cool, compact objects these lenses represent could be the elusive dark matter of our galactic halo. A year later in 1994, Sackett et al. reported the discovery of a red halo in the galaxy NGC 5907 that seems to follow the inferred radial distribution of its dark matter. This suggested that dwarf stars could constitute its missing component. Since NGC 5907 is similar to the Milky Way in type and radius, some surmised that the solution of the galactic dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et al., using the Wide-Field Camera of the recently repaired Hubble Space Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in Nature 373, 191 (1995

    The Spectra of T Dwarfs. II. Red Optical Data

    Full text link
    We present 6300--10100 {\AA} spectra for a sample of 13 T dwarfs observed using LRIS mounted on the Keck I 10m Telescope. A variety of features are identified and analyzed, including pressure-broadened K I and Na I doublets; narrow Cs I and Rb I lines; weak CaH, CrH, and FeH bands; strong H2_2O absorption; and a possible weak CH4_4 band. Hα\alpha emission is detected in three of the T dwarfs, strong in the previously reported active T dwarf 2MASS 1237+6526 and weak in SDSS 1254-0122 and 2MASS 1047+2124. None of the T dwarfs exhibit Li I absorption. Guided by the evolution of optical spectral features with near-infrared spectral type, we derive a parallel optical classification scheme, focusing on spectral types T5 to T8, anchored to select spectral standards. We find general agreement between optical and near-infrared types for nearly all of the T dwarfs so far observed, including two earlier-type T dwarfs, within our classification uncertainties (\sim1 subtype). These results suggest that competing gravity and temperature effects compensate for each other over the 0.6--2.5 \micron spectral region. We identify one possible means of disentangling these effects by comparing the strength of the K I red wing to the 9250 {\AA} H2_2O band. One of our objects, 2MASS 0937+2931, exhibits a peculiar spectrum, with a substantial red slope and relatively strong FeH absorption, both consequences of a metal-deficient atmosphere. Based on its near-infrared properties and substantial space motion, this object may be a thick disk or halo brown dwarf.Comment: 22 pages including 9 figures, accepted to ApJ v594 Sept. 200

    Substellar Companions to Main Sequence Stars: No Brown Dwarf Desert at Wide Separations

    Full text link
    We use three field L and T dwarfs which were discovered to be wide companions to known stars by the Two Micron All-Sky Survey (2MASS) to derive a preliminary brown dwarf companion frequency. Observed L and T dwarfs indicate that brown dwarfs are not unusually rare as wide (Delta >1000 A.U.) systems to F-M0 main-sequence stars (M>0.5M_sun, M_V<9.5), even though they are rare at close separation (Delta <3 A.U.), the ``brown dwarf desert.'' Stellar companions in these separation ranges are equally frequent, but brown dwarfs are >~ 10 times as frequent for wide than close separations. A brown dwarf wide-companion frequency as low as the 0.5% seen in the brown dwarf desert is ruled out by currently-available observations.Comment: ApJL, in pres

    Blue Horizontal Branch Stars in Old, Metal-Rich Stellar Systems

    Get PDF
    Twenty years ago, Burstein et al. (1984)suggested that strong CN and Hbeta absorption meant younger ages among globular clusters in the Andromeda galaxy (M31), unless blue stars above the main-sequence turnoff or on the horizontal branch were uncommonly prominent. Here we test these suggestions by fitting the detailed mid-ultraviolet (2280-3120A) and optical (3850-4750A) spectra of one moderately metal-rich M31 globular cluster, G1. We explore the effects of a wide range of non-solar temperatures and abundance ratios, by combining a small set of theoretical stellar spectra like those of Peterson et al. (2001) that were calculated using extensively updated atomic-line constants. To match the mid-UV fluxes of G1, we find that hot components with Teff >= 8000K must be included. We obtain a very good fit with cool and hot blue horizontal branch (BHB) stars, but less satisfactory fits for blue straggler stars, those hotter than the main-sequence turnoff. The G1 color-magnitude diagram does show cool BHB stars, and the color of its giant branch supports the metallicity of one-sixth the solar value that we deduce. The turnoff temperature of the best-fit model is consistent with that of turnoff stars in galactic globular clusters and the field halo, indicating G1 is comparably old. Because metal-rich cool BHB and extremely blue HB stars have now been found within our own Galaxy, we suggest that these hot horizontal-branch stars be considered in fitting spectra of metal-rich populations such as the Andromeda globular clusters, to avoid possible underestimates of their ages. We plan to make the relevant spectral calculations available as part of our Hubble Treasury Program

    Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases

    Full text link
    Fifty-two magnetic white dwarfs have been identified in spectroscopic observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002 and the end of 2004, including Data Releases 2 and 3. Though not as numerous nor as diverse as the discoveries from the first Data Release, the collection exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two new unusual atomic DQA examples, a molecular DQ, and five stars that show hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may be the most strongly magnetic white dwarf yet discovered. Analysis of the photometric data indicates that the magnetic sample spans the same temperature range as for nonmagnetic white dwarfs from the SDSS, and support is found for previous claims that magnetic white dwarfs tend to have larger masses than their nonmagnetic counterparts. A glaring exception to this trend is the apparently low-gravity object SDSSJ0933+1022, which may have a history involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical Journa

    New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud

    Full text link
    We obtain models for a triaxial Milky Way spheroid based on data by Newberg and Yanny. The best fits to the data occur for a spheroid center that is shifted by 3kpc from the Galactic Center. We investigate effects of the triaxiality on the microlensing optical depth to the Large Magellanic Cloud (LMC). The optical depth can be used to ascertain the number of Massive Compact Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along the line of sight between us and the LMC and thus a larger optical depth. However, shifting the spheroid center leads to an effect that goes in the other direction: the best fit to the spheroid center is_away_ from the line of sight to the LMC. As a consequence, these two effects tend to cancel so that the change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%. After subtracting the spheroid contribution in the four models we consider, the MACHO contribution (central value) to the mass of the Galactic Halo varies from \~(8-20)% if all excess lensing events observed by the MACHO collaboration are assumed to be due to MACHOs. Here the maximum is due to the original MACHO collaboration results and the minimum is consistent with 0% at the 1 sigma error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of the local spheroid density and minor revisions to match version published in Journal of Cosmology and Astroparticle Physics (JCAP

    The Formation Rate, Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey

    Full text link
    Spectrophotometric observations at high signal-to-noise ratio were obtained of a complete sample of 347 DA white dwarfs from the Palomar Green (PG) Survey. Fits of observed Balmer lines to synthetic spectra calculated from pure-hydrogen model atmospheres were used to obtain robust values of Teff, log g, masses, radii, and cooling ages. The luminosity function of the sample, weighted by 1/Vmax, was obtained and compared with other determinations. The mass distribution of the white dwarfs is derived, after important corrections for the radii of the white dwarfs in this magnitude-limited survey and for the cooling time scales. The formation rate of DA white dwarfs from the PG is estimated to be 0.6x10^(-12) pc^(-3) yr^(-1). Comparison with predictions from a theoretical study of the white dwarf formation rate for single stars indicates that >80% of the high mass component requires a different origin, presumably mergers of lower mass double degenerate stars. In order to estimate the recent formation rate of all white dwarfs in the local Galactic disk, corrections for incompleteness of the PG, addition of the DB-DO white dwarfs, and allowance for stars hidden by luminous binary companions had to be applied to enhance the rate. An overall formation rate of white dwarfs recently in the local Galactic disk of 1.15+/-0.25x10^(-12) pc^(-3) yr^(-1) is obtained. Two recent studies of samples of nearby Galactic planetary nebulae lead to estimates around twice as high. Difficulties in reconciling these determinations are discussed.Comment: 73 pages, 18 figures, accepted for publication in the ApJ Supplemen
    corecore