595 research outputs found
The True Incidence of Magnetism among Field White Dwarfs
We study the incidence of magnetism in white dwarfs from three large and
well-observed samples of hot, cool, and nearby white dwarfs in order to test
whether the fraction of magnetic degenerates is biased, and whether it varies
with effective temperature, cooling age, or distance. The magnetic fraction is
considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the
Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the
generally-hotter white dwarfs of the Palomar Green Survey. We show that the
mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more,
so there may be a strong bias against their selection in the magnitude-limited
Palomar Green Survey. We argue that this bias is not as important in the
samples of cool and nearby white dwarfs. However, this bias may not account for
all of the difference in the magnetic fractions of these samples.
It is not clear that the magnetic white dwarfs in the cool and local samples
are drawn from the same population as the hotter PG stars. In particular, two
or threee of the cool sample are low-mass white dwarfs in unresolved binary
systems. Moreover, there is a suggestion from the local sample that the
fractional incidence may increase with decreasing temperature, luminosity,
and/or cooling age. Overall, the true incidence of magnetism at the level of 2
megagauss or greater is at least 10%, and could be higher. Limited studies
capable of detecting lower field strengths down to 10 kilogauss suggest by
implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu
On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars
We present a detailed analysis of a large spectroscopic and photometric
sample of DZ white dwarfs based on our latest model atmosphere calculations. We
revise the atmospheric parameters of the trigonometric parallax sample of
Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs
discovered in the Sloan Digital Sky Survey. The inclusion of metals and
hydrogen in our model atmosphere calculations leads to different atmospheric
parameters than those derived from pure helium models. Calcium abundances are
found in the range from log (Ca/He) = -12 to -8. We also find that fits of the
coolest objects show peculiarities, suggesting that our physical models may not
correctly describe the conditions of high atmospheric pressure encountered in
the coolest DZ stars. We find that the mean mass of the 11 DZ stars with
trigonometric parallaxes, = 0.63 Mo, is significantly lower than that
obtained from pure helium models, = 0.78 Mo, and in much better agreement
with the mean mass of other types of white dwarfs. We determine hydrogen
abundances for 27% of the DZ stars in our sample, while only upper limits are
obtained for objects with low signal-to-noise ratio spectroscopic data. We
confirm with a high level of confidence that the accretion rate of hydrogen is
at least two orders of magnitude smaller than that of metals (and up to five in
some cases) to be compatible with the observations. We find a correlation
between the hydrogen abundance and the effective temperature, suggesting for
the first time empirical evidence of a lower temperature boundary for the
hydrogen screening mechanism. Finally, we speculate on the possibility that the
DZA white dwarfs could be the result of the convective mixing of thin
hydrogen-rich atmospheres with the underlying helium convection zone.Comment: 67 pages, 32 figures, accepted for publication in Ap
Probing Dark Matter
Recent novel observations have probed the baryonic fraction of the galactic
dark matter that has eluded astronomers for decades. Late in 1993, the MACHO
and EROS collaborations announced in this journal the detection of transient
and achromatic brightenings of a handful of stars in the Large Magellanic Cloud
that are best interpreted as gravitational microlensing by low-mass foreground
objects (MACHOS). This tantalized astronomers, for it implied that the
population of cool, compact objects these lenses represent could be the elusive
dark matter of our galactic halo. A year later in 1994, Sackett et al. reported
the discovery of a red halo in the galaxy NGC 5907 that seems to follow the
inferred radial distribution of its dark matter. This suggested that dwarf
stars could constitute its missing component. Since NGC 5907 is similar to the
Milky Way in type and radius, some surmised that the solution of the galactic
dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et
al., using the Wide-Field Camera of the recently repaired Hubble Space
Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in
Nature 373, 191 (1995
The Spectra of T Dwarfs. II. Red Optical Data
We present 6300--10100 {\AA} spectra for a sample of 13 T dwarfs observed
using LRIS mounted on the Keck I 10m Telescope. A variety of features are
identified and analyzed, including pressure-broadened K I and Na I doublets;
narrow Cs I and Rb I lines; weak CaH, CrH, and FeH bands; strong HO
absorption; and a possible weak CH band. H emission is detected in
three of the T dwarfs, strong in the previously reported active T dwarf 2MASS
1237+6526 and weak in SDSS 12540122 and 2MASS 1047+2124. None of the T
dwarfs exhibit Li I absorption. Guided by the evolution of optical spectral
features with near-infrared spectral type, we derive a parallel optical
classification scheme, focusing on spectral types T5 to T8, anchored to select
spectral standards. We find general agreement between optical and near-infrared
types for nearly all of the T dwarfs so far observed, including two
earlier-type T dwarfs, within our classification uncertainties (1
subtype). These results suggest that competing gravity and temperature effects
compensate for each other over the 0.6--2.5 \micron spectral region. We
identify one possible means of disentangling these effects by comparing the
strength of the K I red wing to the 9250 {\AA} HO band. One of our objects,
2MASS 0937+2931, exhibits a peculiar spectrum, with a substantial red slope and
relatively strong FeH absorption, both consequences of a metal-deficient
atmosphere. Based on its near-infrared properties and substantial space motion,
this object may be a thick disk or halo brown dwarf.Comment: 22 pages including 9 figures, accepted to ApJ v594 Sept. 200
Substellar Companions to Main Sequence Stars: No Brown Dwarf Desert at Wide Separations
We use three field L and T dwarfs which were discovered to be wide companions
to known stars by the Two Micron All-Sky Survey (2MASS) to derive a preliminary
brown dwarf companion frequency. Observed L and T dwarfs indicate that brown
dwarfs are not unusually rare as wide (Delta >1000 A.U.) systems to F-M0
main-sequence stars (M>0.5M_sun, M_V<9.5), even though they are rare at close
separation (Delta <3 A.U.), the ``brown dwarf desert.'' Stellar companions in
these separation ranges are equally frequent, but brown dwarfs are >~ 10 times
as frequent for wide than close separations. A brown dwarf wide-companion
frequency as low as the 0.5% seen in the brown dwarf desert is ruled out by
currently-available observations.Comment: ApJL, in pres
Blue Horizontal Branch Stars in Old, Metal-Rich Stellar Systems
Twenty years ago, Burstein et al. (1984)suggested that strong CN and Hbeta absorption meant younger ages among globular clusters in the Andromeda galaxy (M31), unless blue stars above the main-sequence turnoff or on the horizontal branch were uncommonly prominent. Here we test these suggestions by fitting the detailed mid-ultraviolet (2280-3120A) and optical (3850-4750A) spectra of one moderately metal-rich M31 globular cluster, G1. We explore the effects of a wide range of non-solar temperatures and abundance ratios, by combining a small set of theoretical stellar spectra like those of Peterson et al. (2001) that were calculated using extensively updated atomic-line constants. To match the mid-UV fluxes of G1, we find that hot components with Teff >= 8000K must be included. We obtain a very good fit with cool and hot blue horizontal branch (BHB) stars, but less satisfactory fits for blue straggler stars, those hotter than the main-sequence turnoff. The G1 color-magnitude diagram does show cool BHB stars, and the color of its giant branch supports the metallicity of one-sixth the solar value that we deduce. The turnoff temperature of the best-fit model is consistent with that of turnoff stars in galactic globular clusters and the field halo, indicating G1 is comparably old. Because metal-rich cool BHB and extremely blue HB stars have now been found within our own Galaxy, we suggest that these hot horizontal-branch stars be considered in fitting spectra of metal-rich populations such as the Andromeda globular clusters, to avoid possible underestimates of their ages. We plan to make the relevant spectral calculations available as part of our Hubble Treasury Program
Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases
Fifty-two magnetic white dwarfs have been identified in spectroscopic
observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002
and the end of 2004, including Data Releases 2 and 3. Though not as numerous
nor as diverse as the discoveries from the first Data Release, the collection
exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two
new unusual atomic DQA examples, a molecular DQ, and five stars that show
hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may
be the most strongly magnetic white dwarf yet discovered. Analysis of the
photometric data indicates that the magnetic sample spans the same temperature
range as for nonmagnetic white dwarfs from the SDSS, and support is found for
previous claims that magnetic white dwarfs tend to have larger masses than
their nonmagnetic counterparts. A glaring exception to this trend is the
apparently low-gravity object SDSSJ0933+1022, which may have a history
involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical
Journa
New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud
We obtain models for a triaxial Milky Way spheroid based on data by Newberg
and Yanny. The best fits to the data occur for a spheroid center that is
shifted by 3kpc from the Galactic Center. We investigate effects of the
triaxiality on the microlensing optical depth to the Large Magellanic Cloud
(LMC). The optical depth can be used to ascertain the number of Massive Compact
Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo
MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along
the line of sight between us and the LMC and thus a larger optical depth.
However, shifting the spheroid center leads to an effect that goes in the other
direction: the best fit to the spheroid center is_away_ from the line of sight
to the LMC. As a consequence, these two effects tend to cancel so that the
change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%.
After subtracting the spheroid contribution in the four models we consider, the
MACHO contribution (central value) to the mass of the Galactic Halo varies from
\~(8-20)% if all excess lensing events observed by the MACHO collaboration are
assumed to be due to MACHOs. Here the maximum is due to the original MACHO
collaboration results and the minimum is consistent with 0% at the 1 sigma
error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of
the local spheroid density and minor revisions to match version published in
Journal of Cosmology and Astroparticle Physics (JCAP
The Formation Rate, Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey
Spectrophotometric observations at high signal-to-noise ratio were obtained
of a complete sample of 347 DA white dwarfs from the Palomar Green (PG) Survey.
Fits of observed Balmer lines to synthetic spectra calculated from
pure-hydrogen model atmospheres were used to obtain robust values of Teff, log
g, masses, radii, and cooling ages. The luminosity function of the sample,
weighted by 1/Vmax, was obtained and compared with other determinations. The
mass distribution of the white dwarfs is derived, after important corrections
for the radii of the white dwarfs in this magnitude-limited survey and for the
cooling time scales. The formation rate of DA white dwarfs from the PG is
estimated to be 0.6x10^(-12) pc^(-3) yr^(-1). Comparison with predictions from
a theoretical study of the white dwarf formation rate for single stars
indicates that >80% of the high mass component requires a different origin,
presumably mergers of lower mass double degenerate stars. In order to estimate
the recent formation rate of all white dwarfs in the local Galactic disk,
corrections for incompleteness of the PG, addition of the DB-DO white dwarfs,
and allowance for stars hidden by luminous binary companions had to be applied
to enhance the rate. An overall formation rate of white dwarfs recently in the
local Galactic disk of 1.15+/-0.25x10^(-12) pc^(-3) yr^(-1) is obtained. Two
recent studies of samples of nearby Galactic planetary nebulae lead to
estimates around twice as high. Difficulties in reconciling these
determinations are discussed.Comment: 73 pages, 18 figures, accepted for publication in the ApJ Supplemen
- …