3 research outputs found

    Midgut transcriptomic responses to dengue and chikungunya viruses in the vectors Aedes albopictus and Aedes malayensis

    Get PDF
    Dengue (DENV) and chikungunya (CHIKV) viruses are among the most preponderant arboviruses. Although primarily transmitted through the bite of Aedes aegypti mosquitoes, Aedes albopictus and Aedes malayensis are competent vectors and have an impact on arbovirus epidemiology. Here, to fill the gap in our understanding of the molecular interactions between secondary vectors and arboviruses, we used transcriptomics to profile the whole-genome responses of A. albopictus to CHIKV and of A. malayensis to CHIKV and DENV at 1 and 4 days post-infection (dpi) in midguts. In A. albopictus, 1793 and 339 genes were significantly regulated by CHIKV at 1 and 4 dpi, respectively. In A. malayensis, 943 and 222 genes upon CHIKV infection, and 74 and 69 genes upon DENV infection were significantly regulated at 1 and 4 dpi, respectively. We reported 81 genes that were consistently differentially regulated in all the CHIKV-infected conditions, identifying a CHIKV-induced signature. We identified expressed immune genes in both mosquito species, using a de novo assembled midgut transcriptome for A. malayensis, and described the immune architectures. We found the JNK pathway activated in all conditions, generalizing its antiviral function to Aedines. Our comprehensive study provides insight into arbovirus transmission by multiple Aedes vectors

    Cadmium (II) Adsorption from Aqueous Solutions Using Onion Skins

    No full text
    Staff PublicationThe potential of onion skins for removal of aqueous Cd(II) was investigated. Onion skin powder was chemically modified using thioglycolic acid to develop a suitable, low-cost, and efficient adsorbent for the removal of Cd(II) from aqueous solutions. Influences of temperature, contact time, initial concentration of Cd(II), adsorbent dosage, and pH on the removal of Cd(II) were probed. Optimal adsorption conditions were found at pH 5 and 4, and at 60- and 30-min equilibrium time for the modified and native onion skins, respectively. The equilibrium process was well described by the Freundlich isotherm model. The maximum Cd(II) adsorption capacities, from the Langmuir model, are 17.86 mg/g (modified) and 21.28 mg/g (native). The adsorption process followed the mechanism of physisorption. Pseudo second-order rate equation fitted the kinetic data better than the pseudo first-order rate equation for the two adsorbents. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°), were calculated for adsorption experimental studies. The results showed that the adsorption of Cd(II) on native/unmodified and modified onion skins was a feasible process and exothermic under the studied conditions. The Cd(II) adsorbed was efficiently desorbed from adsorbent using 0.3 M HCl
    corecore