68 research outputs found

    Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour

    Get PDF
    We analyze the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology \textit{and} luminosity. An implication of this is that much of the morphology--density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move onto the red sequence of the colour-magnitude diagram without quickly becoming an early-type. We analyze the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths.Comment: 19 pages, 18 figures. Accepted for publication in MNRA

    Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts.

    Get PDF
    Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.Wellcome Trus

    First results from the Very Small Array -- I. Observational methods

    Full text link
    The Very Small Array (VSA) is a synthesis telescope designed to image faint structures in the cosmic microwave background on degree and sub-degree angular scales. The VSA has key differences from other CMB interferometers with the result that different systematic errors are expected. We have tested the operation of the VSA with a variety of blank-field and calibrator observations and cross-checked its calibration scale against independent measurements. We find that systematic effects can be suppressed below the thermal noise level in long observations; the overall calibration accuracy of the flux density scale is 3.5 percent and is limited by the external absolute calibration scale.Comment: 9 pages, 10 figures, MNRAS in press (Minor revisions

    First results from the Very Small Array -- III. The CMB power spectrum

    Full text link
    We present the power spectrum of the fluctuations in the cosmic microwave background detected by the Very Small Array (VSA) in its first season of observations in its compact configuration. We find clear detections of first and second acoustic peaks at l~200 and l~550, plus detection of power on scales up to l=800. The VSA power spectrum is in very good agreement with the results of the Boomerang, Dasi and Maxima telescopes despite the differing potential systematic errors.Comment: 10 pages, 6 figure, MNRAS in press. (Minor revisions - accepted 17 December 2002

    Present bounds on the relativistic energy density in the Universe from cosmological observables

    Get PDF
    We discuss the present bounds on the relativistic energy density in the Universe parameterized in terms of the effective number of neutrinos N using the most recent cosmological data on Cosmic Microwave Background (CMB) temperature anisotropies and polarization, Large Scale galaxy clustering from the Sloan Digital Sky Survey (SDSS) and 2dF, luminosity distances of type Ia Supernovae, Lyman-alpha absorption clouds (Ly-alpha), the Baryonic Acoustic Oscillations (BAO) detected in the Luminous Red Galaxies of the SDSS and finally, Big Bang Nucleosynthesis (BBN) predictions for 4He and Deuterium abundances. We find N= 5.2+2.7-2.2 from CMB and Large Scale Structure data, while adding Ly-alpha and BAO we obtain N= 4.6+1.6-1.5 at 95 % c.l.. These results show some tension with the standard value N=3.046 as well as with the BBN range N= 3.1+1.4-1.2 at 95 % c.l., though the discrepancy is slightly below the 2-sigma level. In general, considering a smaller set of data weakens the constraints on N. We emphasize the impact of an improved upper limit (or measurement) of the primordial value of 3He abundance in clarifying the issue of whether the value of N at early (BBN) and more recent epochs coincide

    First results from the Very Small Array -- II. Observations of the CMB

    Full text link
    We have observed the cosmic microwave background temperature fluctuations in eight fields covering three separated areas of sky with the Very Small Array at 34 GHz. A total area of 101 square degrees has been imaged, with sensitivity on angular scales 3.6 - 0.4 degrees (equivalent to angular multipoles l=150-900). We describe the field selection and observing strategy for these observations. In the full-resolution images (with synthesised beam of FWHM ~ 17 arcmin) the thermal noise is typically 45 microK and the CMB signal typically 55 microK. The noise levels in each field agree well with the expected thermal noise level of the telescope, and there is no evidence of any residual systematic features. The same CMB features are detected in separate, overlapping observations. Discrete radio sources have been detected using a separate 15 GHz survey and their effects removed using pointed follow-up observations at 34 GHz. We estimate that the residual confusion noise due to unsubtracted radio sources is less than 14 mJy/beam (15 microK in the full-resolution images), which added in quadrature to the thermal noise increases the noise level by 6 %. We estimate that the rms contribution to the images from diffuse Galactic emission is less than 6 microK. We also present images which are convolved to maximise the signal-to-noise of the CMB features and are co-added in overlapping areas, in which the signal-to-noise of some individual CMB features exceeds 8.Comment: 11 pages, 5 figures, accepted for publication in MNRAS. Replaces original version - more detailed abstract, corrected typo

    The CMB power spectrum out to l=1400 measured by the VSA

    Full text link
    We have observed the cosmic microwave background (CMB) in three regions of sky using the Very Small Array (VSA) in an extended configuration with antennas of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA observations using a more compact array with larger beamwidth, we measure the power spectrum of the primordial CMB anisotropies between angular multipoles l = 160 - 1400. Such measurements at high l are vital for breaking degeneracies in parameter estimation from the CMB power spectrum and other cosmological data. The power spectrum clearly resolves the first three acoustic peaks, shows the expected fall off in power at high l and starts to constrain the position and height of a fourth peak.Comment: 6 pages with 5 figures, MNRAS in press (minor corrections

    Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests

    Full text link
    (Abridged) We have used the Rayner & Best (1989) smooth tests of goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data. Out of the 41 published VSA individual pointings dedicated to cosmological observations, 37 are found to be consistent with Gaussianity, whereas four pointings show deviations from Gaussianity. In two of them, these deviations can be explained as residual systematic effects of a few visibility points which, when corrected, have a negligible impact on the angular power spectrum. The non-Gaussianity found in the other two (adjacent) pointings seems to be associated to a local deviation of the power spectrum of these fields with respect to the common power spectrum of the complete data set, at angular scales of the third acoustic peak (l = 700-900). No evidence of residual systematics is found in this case, and unsubstracted point sources are not a plausible explanation either. If those visibilities are removed, a cosmological analysis based on this new VSA power spectrum alone shows no differences in the parameter constraints with respect to our published results, except for the physical baryon density, which decreases by 10 percent. Finally, the method has been also used to analyse the VSA observations in the Corona Borealis supercluster region (Genova-Santos et al. 2005), which show a strong decrement which cannot be explained as primordial CMB. Our method finds a clear deviation (99.82%) with respect to Gaussianity in the second-order moment of the distribution, and which can not be explained as systematic effects. A detailed study shows that the non-Gaussianity is produced in scales of l~500, and that this deviation is intrinsic to the data (in the sense that can not be explained in terms of a Gaussian field with a different power spectrum).Comment: 14 pages, 7 figures. Accepted for publication in MNRA

    Core Cosmology Library: Precision Cosmological Predictions for LSST

    Get PDF
    The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL.Comment: 38 pages, 18 figures, matches ApJS accepted versio
    corecore