43 research outputs found
Flux-normalized elastodynamic wavefield decomposition using only particle velocity recordings
We present a new approach to apply wavefield decomposition, illustrated for an energy flux-normalized elastodynamic case. We start by considering a situation where two horizontal boreholes are closely separated from each other. By recording only the particle velocities at both depth levels (for example with conventional 3-component geophones) and expressing the one-way wavefields at one depth level in terms of the fields at the other depth level, an inverse problem can be formulated and solved. This new approach of multi-depth level(MDL) wavefield decomposition is illustrated with a synthetic 2D finite difference example, showing correct one-way wavefield retrieval. We then modify the methodology for a special case with a single receiver array just below a free surface, where the problem is naturally constrained by the (Dirichlet) boundary condition at the free-surface. Again, it is shown that correct elastodynamic wavefield decomposition takes place, for both P- and S-waves
Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications
BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients.
OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs.
DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification.
PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries.
MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes.
RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure.
CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome
Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - An observational study in 29 countries
BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients. OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs. DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification. PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries. MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes. RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (V T) size was 500 ml, or 7 to 9 ml kg−1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P ˂ 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P ˂ 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure. CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high V T and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome.</p
Passive seismic interferometry for reflection imaging & monitoring
Passive seismics is the set of applications that endeavours the exploration of theEarth’s mechanical properties using naturally occurring sources in the subsurface.Conventional imaging of the subsurface is achieved with the aid of reflectionsurveys of body waves from the surface. Passive seismics offers the possibilityto retrieve these reflection surveys using recordings of ambient noise and seismictremors, without the use of active sources. This thesis explores the use of novelapplications in passive seismics with the purpose to obtain an improved subsurfaceimage, compared to those obtained using conventional passive seismic imaging.Applied Geophysics and Petrophysic
Retrieval of Elastodynamic Reflections From Passive Double-Couple Recordings
Virtual Green's functions obtained by seismic interferometry (SI) can provide valuable reflectivity data that can complement tomographic inversion schemes. However, virtual reflections are affected by illumination irregularities that are typical of earthquake-induced wavefields recorded by the receiver array. As a consequence, irregular source distributions, scattering (in case of suboptimal illumination), and complex source mechanisms can significantly disturb the retrieval of Green's function approximations by conventional SI methods. We introduce SI by full-field multidimensional deconvolution (MDD) for elastodynamic wavefields as an alternative method to obtain body wave Green's functions under those typical circumstances. The advantage of this method compared to other MDD methods is that the kernel of its governing equation is exact. This alternative formulation of the kernel pertains to several advantages: the solution is less sensitive to artifacts and utilizes the free-surface multiples in the data to estimate primary reflections. Moreover, the point spread function of the full-field MDD method corrects more affectively for irregular illumination because it also addresses irregularities caused by scattering inside the medium. In order to compare full-field MDD to existing SI methods, we model synthetic earthquake recordings in a subduction zone setting using an elastodynamic finite-difference scheme with double couples of different orientations and peak frequencies. Our results show that SI by cross correlation suffers most under these circumstances. Higher-quality reflections are obtained by the MDD methods, of which full-field MDD involves the most stable inversion, and its results are least contaminated by artifacts.Applied Geophysics and PetrophysicsImPhys/Acoustical Wavefield Imagin
When the virtual influences reality: the conservation project of the Toledo Gate in Ciudad Real (Spain)
The Toledo Gate of Ciudad Real, Spain, constructed between the late 13th and early 14th centuries, is the last remaining portion of a once complete medieval city wall. It represents the long history of the city and constitutes its main heritage symbol, dividing the historic city centre from the later 19th and 20th century expansions. In October 2012, the Town Hall and the Montemadrid Foundation started the conservation works to preserve this important monument. The preliminary phase of this project included an in-depth series of scientific studies which were carried out by a multidisciplinary team focusing on archival research, historic investigations, archaeological excavations as well as material composition analysis and main treatment application tests. As a result of these studies a series of virtual 3D models were created to inform, discuss and study the monument. A first digital model permitted visualization of the gate in the 19th century and how the main entrance to the city was integrated as a fundamental part of the city walls. This virtual reconstruction also became an important part of the campaign to raise awareness among the citizens towards a monument that had remained in the shadows for the last century, isolated in a roundabout after the systematic demolition of the city walls in the late 19th century. Over the last three years and as a result of these archaeological and historic investigations and subsequent virtual models, surprisingly new and interesting data were brought to light thus permitting the establishment and corroboration of a new and updated hypothesis of the Toledo Gate that goes beyond the previous ideas. As a result of these studies a new architectural typology with construction techniques of has been suggested. This paper describes how the results of this continuous and interdisciplinary documentation process have benefitted from a computer graphic reconstruction of the gate. It highlights how virtual reconstruction can be a powerful tool for conservation decision making and awareness raising. Furthermore, the interesting results of the final reconstruction hypothesis convinced the technical team responsible for the conservation to alter some aspects of the final project physical interventions in order to focus on some of the features and conclusions discovered through the virtual model study.Sin financiación0.248 SJR (2016) Q3, 209/670 Information Systems, 357/638 Geography, Planning and DevelopmentUE
Full-field multidimensional deconvolution to retrieve body-wave reflections from sparse passive sources
Our objective is to complement lithospheric seismic tomography with an interferometric method to retrieve high-resolution reflectivity images from local earthquake recordings. The disadvantage of using local earthquakes for the retrieval of reflected body-waves is their usual sparse distribution. We propose an alternative formulation of passive seismic interferometry by multidimensional deconvolution (MDD) which uses the multiples in the full recordings to compensate for missing illumination angles. This method only requires particle-velocity recordings at the surface from passive transient sources and retrieves body-wave reflection responses without free-surface multiples. We conduct an acoustic modelling experiment to compare this formulation to a previous MDD method and Green’s function retrieval by crosscorrelation for different source distributions. We find that in the case of noise-contaminated recordings obtained under severely limited and irregular illumination conditions, the alternative MDD method introduced here still retrieves the complete reflection response without free-surface multiples where the other interferometric methods break down.Applied Geophysics and Petrophysic
Seismic interferometry by midpoint integration
With seismic interferometry reflections can be retrieved between station positions. In the classical form, the reflections are retrieved by an integration over sources. For a specific dataset, however, the actual source distribution might not be sufficient to approximate the source integral. Yet, there might be a dense distribution of receivers allowing integration over the receiver domain. We rewrite the source integral to an integration over midpoints. With this formulation, a reflection can be retrieved even in the limiting case of only a single source. However, with respect to the classical formulation, an additional stationary-phase analysis is required.Geoscience & EngineeringCivil Engineering and Geoscience
Full-field MDD for body-wave reflections from passive transient-sources under severely limited and irregular illumination conditions
Seismic interferometry (SI) presents a set of inexpensive and noninvasive methods that can be applied to any array at the surface to retrieve virtual body-wave reflection responses from earthquake recordings. Conventional SI by cross-correlation requires recordings of wavefields in lossless media generated by a smooth continuous distribution of passive sources with isotropic source radiation patterns and similar power spectra. These conditions are unlikely to be met in the lithosphere: earthquakes are distributed sparsely and generated by complex mechanisms. The resulting anisotropy in the illumination of the receiver array causes the retrieved virtual-source radiation patterns to be irregular, leading to artifacts which can obscure the desired body-wave reflections. SI by multidimensional deconvolution (MDD) can inherently correct for anisotropic illumination of the array and does not rely on the medium being lossless. We propose an alternative formulation of MDD for two-way wavefields: full-field MDD. Different from previous MDD methods for passive two-way wavefield recordings, full-field MDD uses multiples in the passive data to construct the reflection response without free-surface interaction. Therefore, this MDD method profits from additional wavenumbers provided by scattering to compensate for sparse earthquake distributions. Besides, this method does not require wavefield decomposition, which is sensitive to velocity variations at the receiver level. We compare the reflection retrieval by full-field MDD and cross-correlation for a limited passive source distribution in a lithospheric model with a discontinuous Moho at a depth of 50 km. We simulate earthquakes generated by dipole sources along a listric fault-system with power spectra varying within bandwidth 0.2-2.6 Hz. The reflection response retrieved by full-field MDD shows a continuous high-resolution Moho reflection, while cross-correlation yields a very low resolution response obscured by artifacts.Applied Geophysics and Petrophysic