1,834 research outputs found

    A note on the equivariant formal group law of the equivariant complex cobordism ring

    Full text link
    For a finite abelian group GG, we compute the GG-equivariant formal group law corresponding to the GG-equivariant complex cobordism spectrum with its canonical complex orientation.Comment: 11 pages, v

    Intersections of multiplicative translates of 3-adic Cantor sets

    Full text link
    Motivated by a question of Erd\H{o}s, this paper considers questions concerning the discrete dynamical system on the 3-adic integers given by multiplication by 2. Let the 3-adic Cantor set consist of all 3-adic integers whose expansions use only the digits 0 and 1. The exception set is the set of 3-adic integers whose forward orbits under this action intersects the 3-adic Cantor set infinitely many times. It has been shown that this set has Hausdorff dimension 0. Approaches to upper bounds on the Hausdorff dimensions of these sets leads to study of intersections of multiplicative translates of Cantor sets by powers of 2. More generally, this paper studies the structure of finite intersections of general multiplicative translates of the 3-adic Cantor set by integers 1 < M_1 < M_2 < ...< M_n. These sets are describable as sets of 3-adic integers whose 3-adic expansions have one-sided symbolic dynamics given by a finite automaton. As a consequence, the Hausdorff dimension of such a set is always of the form log(\beta) for an algebraic integer \beta. This paper gives a method to determine the automaton for given data (M_1, ..., M_n). Experimental results indicate that the Hausdorff dimension of such sets depends in a very complicated way on the integers M_1,...,M_n.Comment: v1, 31 pages, 6 figure

    p-adic path set fractals and arithmetic

    Full text link
    This paper considers a class C(Z_p) of closed sets of the p-adic integers obtained by graph-directed constructions analogous to those of Mauldin and Williams over the real numbers. These sets are characterized as collections of those p-adic integers whose p-adic expansions are describeed by paths in the graph of a finite automaton issuing from a distinguished initial vertex. This paper shows that this class of sets is closed under the arithmetic operations of addition and multiplication by p-integral rational numbers. In addition the Minkowski sum (under p-adic addition) of two set in the class is shown to also belong to this class. These results represent purely p-adic phenomena in that analogous closure properties do not hold over the real numbers. We also show the existence of computable formulas for the Hausdorff dimensions of such sets.Comment: v1 24 pages; v2 added to title, 28 pages; v3, 30 pages, added concluding section, v.4, incorporate changes requested by reviewe

    Path sets in one-sided symbolic dynamics

    Full text link
    Path sets are spaces of one-sided infinite symbol sequences associated to pointed graphs (G_v_0), which are edge-labeled directed graphs G with a distinguished vertex v_0. Such sets arise naturally as address labels in geometric fractal constructions and in other contexts. The resulting set of symbol sequences need not be closed under the one-sided shift. this paper establishes basic properties of the structure and symbolic dynamics of path sets, and shows they are a strict generalization of one-sided sofic shifts.Comment: 16 pages, 6 figures; v2, 22pages, 6 figures; title change, adds a new Theorem 1.5, and a second Appendix, v3, 21 pages, revisions to exposition; v4 revised introduction; v5, 22 pages, changed title, revised introductio

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(log⁑n)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8k⌈log⁑(k+1)βŒ‰βˆ’1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer kβ‰₯1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~(β‹…)\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ξ©~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(log⁑n)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    The Parental Kidnapping Prevention Act: Constitutionality and Effectiveness

    Get PDF

    Gyroscopic polynomials

    Full text link
    Gyroscopic alignment of a fluid occurs when flow structures align with the rotation axis. This often gives rise to highly spatially anisotropic columnar structures that in combination with complex domain boundaries pose challenges for efficient numerical discretizations and computations. We define gyroscopic polynomials to be three-dimensional polynomials expressed in a coordinate system that conforms to rotational alignment. We remap the original domain with radius-dependent boundaries onto a right cylindrical or annular domain to create the computational domain in this coordinate system. We find the volume element expressed in gyroscopic coordinates leads naturally to a hierarchy of orthonormal bases. We build the bases out of Jacobi polynomials in the vertical and generalized Jacobi polynomials in the radial. Because these coordinates explicitly conform to flow structures found in rapidly rotating systems the bases represent fields with a relatively small number of modes. We develop the operator structure for one-dimensional semi-classical orthogonal polynomials as a building block for differential operators in the full three-dimensional cylindrical and annular domains. The differential operators of generalized Jacobi polynomials generate a sparse linear system for discretization of differential operators acting on the gyroscopic bases. This enables efficient simulation of systems with strong gyroscopic alignment
    • …
    corecore