118 research outputs found

    Global warming: is weight loss a solution?

    Get PDF
    The current climate change has been most likely caused by the increased greenhouse gas emissions. We have looked at the major greenhouse gas, carbon dioxide (CO2), and estimated the reduction in the CO2 emissions that would occur with the theoretical global weight loss. The calculations were based on our previous weight loss study, investigating the effects of a low-carbohydrate diet on body weight, body composition and resting metabolic rate of obese volunteers with type 2 diabetes. At 6 months we observed decreases in weight, fat mass, fat free mass and CO2 production. We estimated that a 10 kg weight loss of all obese and overweight people would result in a decrease of 49.560 Mt of CO2 per year, which would equal to 0.2 % of the CO2 emitted globally in 2007. This reduction could help meet the CO2 emission reduction targets and unquestionably would be of a great benefit to the global health

    Primary structure of lymphocyte function-associated antigen 3 (LFA-3). The ligand of the T lymphocyte CD2 glycoprotein.

    Full text link
    We have isolated the cDNA for human lymphocyte function-associated antigen 3 (LFA-3), the ligand of the T lymphocyte CD2 molecule. The identity of the clones was established by comparison of the deduced amino acid sequence to the LFA-3 NH2-terminal and tryptic peptide sequences. The cDNA defines a mature protein of 222 amino acids that structurally resembles typical membrane-anchored proteins. An extracellular domain with six N-linked glycosylation sites is followed by a hydrophobic putative transmembrane region and a short cytoplasmic domain. The mature glycoprotein is estimated to be 44-68% carbohydrate. Southern blots of human genomic DNA indicate that only one gene codes for human LFA-3. Northern blot analysis demonstrates that the LFA-3 mRNA of 1.3 kb is widely distributed in human tissues and cell lines

    Exploring dietitians' salient beliefs about shared decision-making behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared decision making (SDM), a process by which health professionals and patients go through the decision-making process together to agree on treatment, is a promising strategy for promoting diet-related decisions that are informed and value based and to which patients adhere well. The objective of the present study was to identify dietitians' salient beliefs regarding their exercise of two behaviors during the clinical encounter, both of which have been deemed essential for SDM to take place: (1) presenting patients with all dietary treatment options for a given health condition and (2) helping patients clarify their values and preferences regarding the options.</p> <p>Methods</p> <p>Twenty-one dietitians were allocated to four focus groups. Facilitators conducted the focus groups using a semistructured interview guide based on the Theory of Planned Behavior. Discussions were audiotaped, transcribed verbatim, coded, and analyzed with NVivo8 (QSR International, Cambridge, MA) software.</p> <p>Results</p> <p>Most participants stated that better patient adherence to treatment was an advantage of adopting the two SDM behaviors. Dietitians identified patients, physicians, and the multidisciplinary team as normative referents who would approve or disapprove of their adoption of the SDM behaviors. The most often reported barriers and facilitators for the behaviors concerned patients' characteristics, patients' clinical situation, and time.</p> <p>Conclusions</p> <p>The implementation of SDM in nutrition clinical practice can be guided by addressing dietitians' salient beliefs. Identifying these beliefs also provides the theoretical framework needed for developing a quantitative survey questionnaire to further study the determinants of dietitians' adoption of SDM behaviors.</p

    The high affinity selectin glycan ligand C2-O-sLex and mRNA transcripts of the core 2 β-1,6-N-acetylglusaminyltransferase (C2GnT1) gene are highly expressed in human colorectal adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metastasis of cancer cells and leukocyte extravasation into inflamed tissues share common features. Specialized carbohydrates modified with sialyl Lewis x (sLe<sup>x</sup>) antigens on leukocyte membranes are ligands for selectin adhesion molecules on activated vascular endothelial cells at inflammatory sites. The activity of the enzyme core 2 β1,6 <it>N</it>-acetylglucosaminyltransferase (C2GnT1) in leukocytes greatly increases their ability to bind to endothelial selectins. C2GnT1 is essential for the synthesis of core 2-branched O-linked carbohydrates terminated with sLe<sup>x </sup>(C2-O-sLe<sup>x</sup>). Our goal was to determine the expression profiles of C2-O-sLe<sup>x </sup>in the malignant progression and metastasis of colorectal adenocarcinomas. The well characterized CHO-131 monoclonal antibody (mAb) specifically recognizes C2-O-sLe<sup>x </sup>present in human leukocytes and carcinoma cells. Using CHO-131 mAb, we investigated whether C2-O-sLe<sup>x </sup>was present in 113 human primary colorectal adenocarcinomas, 10 colorectal adenomas, 46 metastatic liver tumors, 28 normal colorectal tissues, and 5 normal liver tissues by immunohistochemistry. We also examined mRNA levels of the enzyme core 2 β1,6-<it>N</it>-acetylglucosaminyltransferase (C2GnT1) in 20 well, 15 moderately, and 2 poorly differentiated colorectal adenocarcinomas, and in 5 normal colorectal tissues by using quantitative real-time polymerase chain reactions (RT-PCR).</p> <p>Results</p> <p>We observed high reactivity with CHO-131 mAb in approximately 70% of colorectal carcinomas and 87% of metastatic liver tumors but a lack of reactivity in colorectal adenomas and normal colonic and liver tissues. Positive reactivity with CHO-131 mAb was very prominent in neoplastic colorectal glands of well to moderately differentiated adenocarcinomas. The most intense staining with CHO-131 mAb was observed at the advancing edge of tumors with the deepest invasive components.</p> <p>Finally, we analyzed C2GnT1 mRNA levels in 37 colorectal adenocarcinomas and 5 normal colorectal tissues by RT-PCR. Significantly, we observed a greater than 15-fold increase in C2GnT1 mRNA levels in colorectal adenocarcinomas compared to normal colorectal tissues.</p> <p>Conclusion</p> <p>C2-O-sLe<sup>x</sup>, detected by the CHO-131 mAb, is a tumor associated antigen whose expression is highly upregulated in colorectal adenocarcinomas and metastatic liver tumors compared to normal tissues. C2-O-sLe<sup>x </sup>is a potentially useful early predictor of metastasis.</p

    Surface Aggregation of Urinary Proteins and Aspartic Acid-Rich Peptides on the Faces of Calcium Oxalate Monohydrate Investigated by In Situ Force Microscopy

    Get PDF
    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin, and the 27-residue synthetic peptides (DDDS)6DDD and (DDDG)6DDD (D = aspartic acid, S = serine, and G = glycine) was investigated via in situ atomic force microscopy. The results show that these four growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition of or an increase in the step speeds (with respect to the impurity-free system), depending on a range of factors that include peptide or protein concentration, supersaturation, and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(1ˉ01) \left( {\bar{1}01} \right) \end{document} face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we propose a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at the crystal surface

    CD44v4 Is a Major E-Selectin Ligand that Mediates Breast Cancer Cell Transendothelial Migration

    Get PDF
    BACKGROUND: Endothelial E-selectin has been shown to play a pivotal role in mediating cell-cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: By assessing migration of various breast cancer cells across TNF-alpha pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLe(x)) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a approximately 170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLe(x) moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA. CONCLUSIONS/SIGNIFICANCE: We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin-dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis

    Modeling the interactions between river morphodynamics and riparian vegetation

    Get PDF
    The study of river-riparian vegetation interactions is an important and intriguing research field in geophysics. Vegetation is an active element of the ecological dynamics of a floodplain which interacts with the fluvial processes and affects the flow field, sediment transport, and the morphology of the river. In turn, the river provides water, sediments, nutrients, and seeds to the nearby riparian vegetation, depending on the hydrological, hydraulic, and geomorphological characteristic of the stream. In the past, the study of this complex theme was approached in two different ways. On the one hand, the subject was faced from a mainly qualitative point of view by ecologists and biogeographers. Riparian vegetation dynamics and its spatial patterns have been described and demonstrated in detail, and the key role of several fluvial processes has been shown, but no mathematical models have been proposed. On the other hand, the quantitative approach to fluvial processes, which is typical of engineers, has led to the development of several morphodynamic models. However, the biological aspect has usually been neglected, and vegetation has only been considered as a static element. In recent years, different scientific communities (ranging from ecologists to biogeographers and from geomorphologists to hydrologists and fluvial engineers) have begun to collaborate and have proposed both semiquantitative and quantitative models of river-vegetation interconnections. These models demonstrate the importance of linking fluvial morphodynamics and riparian vegetation dynamics to understand the key processes that regulate a riparian environment in order to foresee the impact of anthropogenic actions and to carefully manage and rehabilitate riparian areas. In the first part of this work, we review the main interactions between rivers and riparian vegetation, and their possible modeling. In the second part, we discuss the semiquantitative and quantitative models which have been proposed to date, considering both multi- and single-thread river
    corecore