4,463 research outputs found

    On the local dynamics of polynomial difference equations with fading stochastic perturbations

    Get PDF
    We examine the stability-instability behaviour of a polynomial difference equa- tion with state-independent, asymptotically fading stochastic perturbations. We find that the set of initial values can be partitioned into a stability region, an instability region, and a region of unknown dynamics that is in some sense \small". In the ¯rst two cases, the dynamic holds with probability at least 1 ¡ °, a value corresponding to the statistical notion of a confidence level. Aspects of an equation with state-dependent perturbations are also treated. When the perturbations are Gaussian, the difference equation is the Euler-Maruyama dis- cretisation of an It^o-type stochastic differential equation with solutions displaying global a.s. asymptotic stability. The behaviour of any particular solution of the difference equation can be made consistent with the corresponding solution of the differential equation, with probability 1 ¡ °, by choosing the stepsize parameter sufficiently small. We present examples illustrating the relationship between h, ° and the size of the stability region

    Mutually unbiased bases: tomography of spin states and star-product scheme

    Full text link
    Mutually unbiased bases (MUBs) are considered within the framework of a generic star-product scheme. We rederive that a full set of MUBs is adequate for a spin tomography, i.e. knowledge of all probabilities to find a system in each MUB-state is enough for a state reconstruction. Extending the ideas of the tomographic-probability representation and the star-product scheme to MUB-tomography, dequantizer and quantizer operators for MUB-symbols of spin states and operators are introduced, ordinary and dual star-product kernels are found. Since MUB-projectors are to obey specific rules of the star-product scheme, we reveal the Lie algebraic structure of MUB-projectors and derive new relations on triple- and four-products of MUB-projectors. Example of qubits is considered in detail. MUB-tomography by means of Stern-Gerlach apparatus is discussed.Comment: 11 pages, 1 table, partially presented at the 17th Central European Workshop on Quantum Optics (CEWQO'2010), June 6-11, 2010, St. Andrews, Scotland, U

    SIC~POVMs and Clifford groups in prime dimensions

    Full text link
    We show that in prime dimensions not equal to three, each group covariant symmetric informationally complete positive operator valued measure (SIC~POVM) is covariant with respect to a unique Heisenberg--Weyl (HW) group. Moreover, the symmetry group of the SIC~POVM is a subgroup of the Clifford group. Hence, two SIC~POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension three, each group covariant SIC~POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC~POVM is a subgroup of at least one of the Clifford groups of these HW groups respectively. There may exist two or three orbits of equivalent SIC~POVMs for each group covariant SIC~POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC~POVMs in dimension three, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC~POVMs by regrouping of the fiducial vectors from different SIC~POVMs which may or may not be on the same orbit of the extended Clifford group.Comment: 30 pages, 1 figure, section 4 revised and extended, published in J. Phys. A: Math. Theor. 43, 305305 (2010

    From SICs and MUBs to Eddington

    Full text link
    This is a survey of some very old knowledge about Mutually Unbiased Bases (MUB) and Symmetric Informationally Complete POVMs (SIC). In prime dimensions the former are closely tied to an elliptic normal curve symmetric under the Heisenberg group, while the latter are believed to be orbits under the Heisenberg group in all dimensions. In dimensions 3 and 4 the SICs are understandable in terms of elliptic curves, but a general statement escapes us. The geometry of the SICs in 3 and 4 dimensions is discussed in some detail.Comment: 12 pages; from the Festschrift for Tony Sudber

    On the dynamic tensile strength of Zirconium

    Get PDF
    Despite its fundamental nature, the process of dynamic tensile failure (spall) is poorly understood. Spall initiation via cracks, voids, etc, before subsequent coalesce, is known to be highly microstructure-dependant. In particular, the availability of slip planes and other methods of plastic deformation controls the onset (or lack thereof) of spall. While studies have been undertaken into the spall response of BCC and FCC materials, less attention has paid to the spall response of highly anisotropic HCP materials. Here the dynamic behaviour of zirconium is investigated via plate-impact experiments, with the aim of building on an ongoing in-house body of work investigating these highly complex materials. In particular, in this paper the effect of impact stress on spall in a commercially sourced Zr rod is considered, with apparent strain-rate softening highlighted

    Outcomes of a residential respite service for homeless people with tuberculosis in London, UK: a cross-sectional study

    Get PDF
    Background: Many countries are seeking to eliminate tuberculosis (TB), but incidence remains high in socially excluded groups such as people experiencing homelessness. There is limited research into the effectiveness of residential respite services (RRS), which provide accomodation and social and clinical support for homeless people with active TB. // Methods: We used a register of all cases of TB diagnosed in London between 1 January 2010 and 3 October 2019 to compare characteristics and outcomes of patients treated in an RRS with patients receiving standard care. The primary outcome was successful treatment completion. We used logistic regression to compare likelihood of completing treatment, and simulation to estimate the absolute change in treatment completion resulting from this service. // Results: A total of 78 homeless patients finished an episode of TB treatment at the RRS. Patients treated in the RRS were more likely than patients treated in standard care to have clinical and social risk factors including drug resistance, history of homelessness, drug or alcohol use, and need for directly observed therapy. After adjusting for these factors, patients treated in the RRS had 2.97 times the odds of completing treatment (95% CI = 1.44–6.96). Treatment ended in failure for 8/78 patients treated in the RRS (10%, 95% CI = 5%–20%). We estimated that in the absence of the RRS, treatment would have ended in failure for 17/78 patients (95% CI = 11–25). // Conclusion: The residential respite service for homeless TB patients with complex social needs was associated with better treatment outcomes

    Long quantum channels for high-quality entanglement transfer

    Full text link
    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are coupled to the chain by an exchange interaction j0j_0 comparable with the intrachain exchange. Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j0opt(N)j_0^{opt}(N), where NN is the channel length. We show that j0opt(N)j_0^{opt}(N) scales as N1/6N^{-1/6} for large NN and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, the average quantum-state transmission fidelity exceeds 90% for any chain length. We emphasize that, taking the reverse point of view, should j0j_0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value.Comment: 12 pages, 9 figure

    A Quantum-Bayesian Route to Quantum-State Space

    Get PDF
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent's personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation of quantum states induced by a symmetric informationally complete measurement or SIC. In this representation, the Born rule takes the form of a particularly simple modification of the law of total probability. We show how to derive key features of quantum-state space from (i) the requirement that the Born rule arises as a simple modification of the law of total probability and (ii) a limited number of additional assumptions of a strong Bayesian flavor.Comment: 7 pages, 1 figure, to appear in Foundations of Physics; this is a condensation of the argument in arXiv:0906.2187v1 [quant-ph], with special attention paid to making all assumptions explici

    Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Get PDF
    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a onedimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium content
    corecore