7 research outputs found

    Do Different Tree-Ring Proxies Contain Different Temperature Signals? A Case Study of Norway Spruce (Picea abies (L.) Karst) in the Eastern Carpathians

    No full text
    One of the most important proxy archives for past climate variation is tree rings. Tree-ring parameters offer valuable knowledge regarding how trees respond and adapt to environmental changes. Trees encode all environmental changes in different tree-ring parameters. In this study, we analyzed how air temperature is encoded in different Norway spruce tree-ring proxies along an altitude gradient in an intramountain valley of the Carpathians. The study area, in the Gheorgheni region, Romania (Eastern Carpathians), has a mountain climate with a frequent temperature inversion in winter. The climate–growth relationship was analyzed for two contrasting altitudes: low elevation, i.e., below 1000 m a.s.l., and high elevation, i.e., above 1500 m a.s.l. Two local weather stations, one in the valley and the other on the upper part of the mountains, provide daily temperatures (Joseni—750 m a.s.l. and Bucin—1282 m a.s.l.). The bootstrap Pearson correlation between cumulative daily temperature data and three tree-ring proxies (tree-ring width—TRW, basal area increment—BAI, and blue intensity—BI) was computed for each series. The results show that elevation modulates the climate response pattern in the case of BI, and remains relatively similar for TRW and BAI. The winter temperature’s positive influence on spruce growth was observed in both TRW and BAI chronologies. Additionally, the BAI chronology highlights a positive relationship with summer temperature. The highest correlation coefficient (r = 0.551, p < 0.05, n = 41) was recorded between BI residual chronology from high elevation series and summer/autumn temperature from the upper-part weather station for a cumulative period of 59 days (the second half of August to the beginning of October). Our results show that, for this intramountain valley of the Eastern Carpathians, different tree-ring proxies capture different climate signals

    Optimization of the Manufacturing Process by Molding Cobalt-Chrome Alloys in Assembled Dental Frameworks

    No full text
    In oral rehabilitation, the treatment of partial edentulism (PEd) is performed by removable partial dentures (RPD) or assembled prosthetic works (APW) composed of several components, fixed to the prosthetic field (Pa) and a removable one (Pb), in order to facilitate the daily hygiene but also the damping of the occlusal forces applied in mastication. Cobalt-Chromium alloys are materials used to manufacture modern prosthetic assembles. In order for this study to be relevant, it was necessary to standardize the design of the framework (Pa) in terms of shape and volume so that the experiment could be reproducible for the five Co-Cr alloys: 0-A (Co-Cr-Mo), 5-A and 10-A (Co-Cr-Mo-W), 15-A and 16.4-A (Co-Cr-W-Fe) and for the three fabrication methods of dental assembled prosthetic frameworks: refractory duplicate method (RD) resulting removable framework (Pb), direct construction method (DC) resulting removable framework (Pb-) and casting over metal method (CoM) resulting removable framework (Pb+). The time allocated to the adaptation process (AP), mechanical processing and sandblasting, in order to assemble the two components was between 43–70 min, even though the assembly between the Pa-framework and the complementary framework (Pb+) was not necessary, CoM-method hs been provide the elimination of AP step. By applying the arithmetic simple rule of three, the percentages for each of the three methods used were calculated, the values of the difference were obtained. The CoM method improves the joining precision between the components of the removable assembly of prosthetic frameworks by 91.7% compared to the RD method and by 80.62% compared to the DC method. According to the efficiency of the methods used in the precision of joining between frameworks components, their order is: casting over metal, direct construction and refractory duplicate method

    New 2-Phenylthiazoles as Potential Sortase A Inhibitors: Synthesis, Biological Evaluation and Molecular Docking

    No full text
    Sortase A inhibition is a well establish strategy for decreasing bacterial virulence by affecting numerous key processes that control biofilm formation, host cell entry, evasion and suppression of the immune response and acquisition of essential nutrients. A meta-analysis of structures known to act as Sortase A inhibitors provided the starting point for identifying a new potential scaffold. Based on this template a series of new potential Sortase A inhibitors, that contain the 2-phenylthiazole moiety, were synthesized. The physicochemical characterisation confirmed the identity of the proposed structures. Antibacterial activity evaluation showed that the new compounds have a reduced activity against bacterial cell viability. However, the compounds prevent biofilm formation at very low concentrations, especially in the case of E. faecalis. Molecular docking studies performed estimate that this is most likely due to the inhibition of Sortase A. The new compounds could be used as add-on therapies together with known antibacterial agents in order to combat multidrug-resistance enterococcal infections

    Study on the Surface of Cobalt-Chromium Dental Alloys and Their Behavior in Oral Cavity as Cast Materials

    No full text
    This study presents the correct processing of Co–Cr alloys as a method of preserving the properties of the materials as-cast, and therefore they can be safely placed in contact with the oral cavity tissues as resistance frameworks. The basic materials analyzed in this study were five commercial Co–Cr dental alloys with different components obtained in three processing steps. The analysis of the electrochemical behavior at the surface of the Co–Cr alloys was performed by electrochemical measurements: impedance spectroscopy (EIS), open circuit electrical potential (OCP), and linear polarization (LP). In terms of validation, all five alloys had a tendency to generate a stable oxide layer at the surface. After the measurements and the graphical representation, the alloy that had a higher percentage of tungsten (W) and iron (Fe) in composition showed a higher tendency of anodizing. After the application of the heat treatment, the disappearance of the hexagonal phase was observed, with the appearance of new phases of type (A,B)2O3 corresponding to some oxide compounds, such as Fe2O3, Cr2O3, (Cr,Fe)2O3, and CoMnO3. In conclusion, the processing of Co–Cr alloys by melting and casting in refractory molds remains a viable method that can support innovation, in the context of technology advance in recent years towards digitalization of the manufacturing process, i.e., the construction of prosthetic frameworks conducted by additive methods using Co–Cr powder alloy

    The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference

    No full text

    Proceedings of The 8th Romanian National HIV/AIDS Congress and The 3rd Central European HIV Forum

    No full text
    corecore