2,706 research outputs found

    Commensurate-incommensurate transitions of quantum Hall stripe states in double-quantum-well systems

    Full text link
    In higher Landau levels (N>0) and around filling factors nu =4N+1, a two-dimensional electron gas in a double-quantum-well system supports a stripe groundstate in which the electron density in each well is spatially modulated. When a parallel magnetic field is added in the plane of the wells, tunneling between the wells acts as a spatially rotating effective Zeeman field coupled to the ``pseudospins'' describing the well index of the electron states. For small parallel fields, these pseudospins follow this rotation, but at larger fields they do not, and a commensurate-incommensurate transition results. Working in the Hartree-Fock approximation, we show that the combination of stripes and commensuration in this system leads to a very rich phase diagram. The parallel magnetic field is responsible for oscillations in the tunneling matrix element that induce a complex sequence of transitions between commensurate and incommensurate liquid or stripe states. The homogeneous and stripe states we find can be distinguished by their collective excitations and tunneling I-V, which we compute within the time-dependent Hartree-Fock approximation.Comment: 23 pages including 8 eps figure

    Skyrme Crystal In A Two-Dimensional Electron Gas

    Full text link
    The ground state of a two-dimensional electron gas at Landau level filling factors near ν=1\nu =1 is a Skyrme crystal with long range order in the positions and orientations of the topologically and electrically charged elementary excitations of the ν=1\nu=1 ferromagnetic ground state. The lowest energy Skyrme crystal is a square lattice with opposing postures for topological excitations on opposite sublattices. The filling factor dependence of the electron spin-polarization, calculated for the square lattice Skyrme crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from [email protected]

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Stripes in Quantum Hall Double Layer Systems

    Full text link
    We present results of a study of double layer quantum Hall systems in which each layer has a high-index Landau level that is half-filled. Hartree-Fock calculations indicate that, above a critical layer separation, the system becomes unstable to the formation of a unidirectional coherent charge density wave (UCCDW), which is related to stripe states in single layer systems. The UCCDW state supports a quantized Hall effect when there is tunneling between layers, and is {\it always} stable against formation of an isotropic Wigner crystal for Landau indices N1N \ge 1. The state does become unstable to the formation of modulations within the stripes at large enough layer separation. The UCCDW state supports low-energy modes associated with interlayer coherence. The coherence allows the formation of charged soliton excitations, which become gapless in the limit of vanishing tunneling. We argue that this may result in a novel {\it ``critical Hall state''}, characterized by a power law IVI-V in tunneling experiments.Comment: 10 pages, 8 figures include

    Collective Modes of Quantum Hall Stripes

    Full text link
    The collective modes of striped phases in a quantum Hall system are computed using the time-dependent Hartree-Fock approximation. Uniform stripe phases are shown to be unstable to the formation of modulations along the stripes, so that within the Hartree-Fock approximation the groundstate is a stripe crystal. Such crystalline states are generically gapped at any finite wavevector; however, in the quantum Hall system the interactions of modulations among different stripes is found to be remarkably weak, leading to an infinite collection of collective modes with immeasurably small gaps. The resulting long wavelength behavior is derivable from an elastic theory for smectic liquid crystals. Collective modes for the phonon branch are computed throughout the Brillouin zone, as are spin wave and magnetoplasmon modes. A soft mode in the phonon spectrum is identified for partial filling factors sufficiently far from 1/2, indicating a second order phase transition. The modes contain several other signatures that should be experimentally observable.Comment: 36 pages LaTex with 11 postscript figures. Short animations of the collective modes can be found at http://www.physique.usherb.ca/~rcote/stripes/stripes.ht

    Complex microwave conductivity of Pr1.85_{1.85}Ce0.15_{0.15}CuO4δ_{4-\delta} thin films using a cavity perturbation method

    Full text link
    We report a study of the microwave conductivity of electron-doped Pr1.85_{1.85}Ce0.15_{0.15}CuO4δ_{4-\delta} superconducting thin films using a cavity perturbation technique. The relative frequency shifts obtained for the samples placed at a maximum electric field location in the cavity are treated using the high conductivity limit presented recently by Peligrad et\textit{et} al.\textit{al.} Using two resonance modes, TE102_{102} (16.5 GHz) and TE101_{101} (13 GHz) of the same cavity, only one adjustable parameter Γ\Gamma is needed to link the frequency shifts of an empty cavity to the ones of a cavity loaded with a perfect conductor. Moreover, by studying different sample configurations, we can relate the substrate effects on the frequency shifts to a scaling factor. These procedures allow us to extract the temperature dependence of the complex penetration depth and the complex microwave conductivity of two films with different quality. Our data confirm that all the physical properties of the superconducting state are consistent with an order parameter with lines of nodes. Moreover, we demonstrate the high sensitivity of these properties on the quality of the films

    Dynamical matrix of two-dimensional electron crystals

    Full text link
    In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to get the dynamical matrix of these crystals from a calculation of the density response function performed in the Generalized Random Phase Approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11 postscripts figure

    Long-range potentials and (n1)d+ns(n-1)d+ns molecular resonances in an ultracold rydberg gas

    Full text link
    We have calculated long-range molecular potentials of the 0g+0_g^{+}, 0u0_u^{-} and 1u1_u symmetries between highly-excited rubidium atoms. Strong np+npnp+np potentials characterized by these symmetries are important in describing interaction-induced phenomena in the excitation spectra of high npnp Rydberg states. Long-range molecular resonances are such phenomena and they were first reported in S.M. Farooqi {\it et al.}, Phys. Rev. Lett. {\bf 91} 183002. One class of these resonances occurs at energies corresponding to excited atom pairs (n1)d+ns(n-1)d+ns. Such resonances are attributed to \ell-mixing due to Rydberg-Rydberg interactions so that otherwise forbidden molecular transitions become allowed. We calculate molecular potentials in Hund's case (c), use them to find the resonance lineshape and compare to experimental results.Comment: 11 pages, 7 figure

    Continuous star cluster formation in the spiral NGC 45

    Full text link
    We determined ages for 52 star clusters with masses < 10^6 solar masses in the low surface brightness spiral galaxy NGC 45. Four of these candidates are old globular clusters located in the bulge. The remaining ones span a large age range. The cluster ages suggest a continuous star/cluster formation history without evidence for bursts, consistent with the galaxy being located in a relatively unperturbed environment in the outskirts of the Sculptor group.Comment: 4 pages, 3 figures. To appear in "Island Universes - Structure and Evolution of Disk Galaxies", Terschelling (Netherlands), July 200

    Electromagnetic absorption of a pinned Wigner crystal at finite temperatures

    Full text link
    We investigate the microwave absorption of a pinned, two-dimensional Wigner crystal in a strong magnetic field at finite temperatures. Using a model of a uniform commensurate pinning potential, we analyze thermal broadening of the electromagnetic absorption resonance. Surprisingly, we find that the pinning resonance peak should remain sharp even when the temperature is comparable or greater than the peak frequency. This result agrees qualitatively with recent experimental observations of the ac conductivity in two-dimensional hole systems in a magnetically induced insulating state. It is shown, in analogy with Kohn's theorem, that the electron-electron interaction does not affect the response of a harmonically pinned Wigner crystal to a spatially uniform external field at any temperature. We thus focus on anharmonicity in the pinning potential as a source of broadening. Using a 1/N expansion technique, we show that the broadening is introduced through the self-energy corrections to the magnetophonon Green's functions.Comment: 21 pages, 9 eps figure
    corecore